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Credits

• Some examples and figures on graph databases are taken from:

Ian Robinson, Jim Webber, & Emil Eifrem. Graph Databases. 

O’Reilly. 2013. Available at http://graphdatabases.com/

• The slides from 18 to 30 are taken from: Maribel Acosta, Cosmin

Basca, Alejandro Flores,, Edna Ruckhaus, Maria-Esther Vidal. 

Semantic Data Management in Graph Databases. ESWC-14 tutorial 

([ABFRV14]), with minor adaptations.

• The part on RDF storage is taken from: Yongming Luo, Francois 

Picalausa, George H.L. Fletcher, Jan Hidders, and Stijn Vansummeren. 

Storing and Indexing Massive RDF Data Sets. In Semantic Search

over the Web. Springer. 2012
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• Introduction to Graph Databases

• Resource Description Framework (RDF)

• Querying RDF databases: The SPARQL 

language

• RDF storage

• Linked data

• Tools
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Graph Databases



The NoSQL movement

• Since the 80s, the dominant back end of business systems has been

a relational database 

• It’s remarkable that many architectural variations have been

explored in the design of clients, front ends, and middle-ware, on a 

multitude of platforms and frameworks, but haven’t until recently

questioned the architecture of the back end.

• In the past decade, we’ve been faced with data that is bigger in 

volume, changes more rapidly, and is more structurally varied (in a 

definition, Big Data) than can be dealt with by traditional RDBMS 

deployments.

• The NOSQL movement has arisen in response to these challenges. 
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Limits of relational technologies for Big Data 
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• The schema of a relational database is static and has to be understood
from the beginning of a database design => Big data may change at
an high rate over the time, so does their structure. 

• Relational databases do not well behave in the presence of high 
variety in the data => Big data may be regularly or irregularly
structured, dense or sparse, connected or disconnected

• Query execution times increase as the size of tables and the number
of joins grow (so-called join pain) => this is not substainable when
we require sub-second response to queries (NoSQL approaches tend
to organize the data in such a way that the join is already computed, 
but this comes at the price of flexibility: essentially no precomputed
joins cannot be executed)



Graph databases
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• A graph database is a database that uses graph structures with nodes, 

edges, and properties to represent and store data.

• A management systems for graph databases offers Create, Read, 

Update, and Delete (CRUD) methods to access and manipulate data.

• Graph databases can be used for both OLAP (since are naturally

multidimensional structures ) and OLTP.

• Systems tailored to OLTP (e.g., Neo4j) are generally optimized for 

transactional performance, and tend to guarantee ACID properties.



Graph databases

• Graph databases are schemaless: 

– Thus they well behave in response to the dynamics of big data: you

can accumulate data incrementally, without the need of a 

predefined, rigid schema; 

– They provide flexibility in assiging different pieces of information 

with different properties, at any granularity;

– They are very good in managing sparse data.

– This does not mean that intensional aspects cannot be casted into a 

graph, but they are not pre-defined and are normally treated as data 

are treated.

• Graph databases can be queried through (standardized) 

languages: depending on the storage engine (see later) they can 

provide very good performances because essentially they avoid

classical joins (but performances depend on the kind of queries)
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Flexibility in graph databases

8

Incorporating

dynamic

information is

natural and simple



Graph Databases 

Embrace Relationships
• Obviously, graph databases are particulary suited to model situations in 

which the information is somehow “natively” in the form of a graph.

• The real world provide us with a lot of application domains: social 

networks, recommendation systems, geospatial applications, computer 

networks and data center management, authorization and access control 

systems, to mention some of them.

• The success key of graph databases in these contexts is the fact that they

provide native means to represent relationships.

• Relational databases instead lack relationships: they have to be simulated

through the help of foreign keys, thus adding additional development and 

maintenance overhead, and “discover” them require costly join 

operations. 
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Graph DBs vs Relational DBs- Example

Modeling friends and friends-of-friends in a relational

database
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Notice that PersonFriend has not to be considered as symmetric: Bob may

consider Zach as friend, but the converse does not necessarily hold



Graph DBs vs Relational DBs- Example

SELECT p1.Person

FROM Person p1 JOIN PersonFriend ON 

PersonFriend.FriendID = p1.ID JOIN Person p2 ON 

PersonFriend.PersonID = p2.ID 

WHERE p2.Person = 'Bob' 
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Asking “who are Bob’s friends?” (i.e., those that Bob 

considers as friend) is easy 



Graph DBs vs Relational DBs- Example

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND 

FROM PersonFriend pf1 JOIN Person p1 ON 

pf1.PersonID = p1.ID JOIN PersonFriend pf2 ON    

pf2.PersonID = pf1.FriendID JOIN Person p2 ON

pf2.FriendID = p2.ID

WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID 
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Things become more problematic when we ask, “who are

Alice’s friends-of-friends?” 

Performances highly deteriorate when we go more in depth

into the network of friends



Graph DBs vs Relational DBs- Example

Modeling friends and friends-of-friends in a graph database
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AliceAlice BobBob

ZacZac

FRIEND_OF

FRIEND_OF
FRIEND_OF

Relationships in a graph naturally form paths. Querying means actually

traversing the graph, i.e., following paths. Because of the fundamentally

path-oriented nature of the data model, the majority of path-based graph

database operations are extremely efficient (but other operations may be 

however more difficult)



Graph DBs vs Relational DBs- Experiment
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From Neo4j in Action. Jonas Partner, Aleksa Vukotic, and Nicki

Watt. MEAP. 2012

The following table reports result of an experiment aimed to finding

friends-of-friends in a social network, to a maximum depth of five, for a 

social network containing 1,000,000 people, each with approximately 50 

friends. 

Given any two persons chosen at random, is there a path that connects

them that is at most five relationships long?



Graph DBs vs Relational DBs- Experiment
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• Indeed, in the SQL query we need 3 joins (each table is joined twice). 

• If n is the number of persons and m is the number of pairs of friends, 

this means a cost of O(n2m2). 

• Indexes reduce this cost, since they allow us to avoid linear search over 

a column. 

• Assuming that the structure of the index is a binary search tree, the cost

is O((log2n)2(log2m)2)

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND 

FROM PersonFriend pf1 JOIN Person p1 ON 

pf1.PersonID = p1.ID JOIN PersonFriend pf2 ON    

pf2.PersonID = pf1.FriendID JOIN Person p2 ON

pf2.FriendID = p2.ID

WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID 



Graph DBs vs Relational DBs- Experiment
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• Starting from a node, we have to scan all outgoing edges to identify

FRIEND_OF edges

• We then have to traverse the edges and repeat the search in all the 

reached nodes.

• If x bounds the number of outgoing edges (assuming x<<n), and k

bounds the number of FRIEND_OF edges outgoing from a node

(k<<m), then the cost here is O(x)+O(kx) (the cost of traversal is

constant)

• Local indexes are normally used to speed up local search

AliceAlice FRIEND_OF



Graph DBs vs Relational DBs- Queries*
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• Relational Databases (querying is through joins)
• In effect, the join operation forms a graph that is dynamically

constructed as one table is linked to another table. While having the 

benefit of being able to dynamically construct graphs, the limitation is

that this graph is not explicit in the relational structure, but instead must 

be inferred through a series of index-intensive operations.

• Moreover, while only a particular subset of the data in the database 

may be desired (e.g. only Alice’s friend’s), all data in all queried tables

must be examined in order to extract the desired subset

• Graph Databases (querying is through traversal paths)
• There is no explicit join operation because vertices maintain direct

references to their adjacent edges. In many ways, the edges of the graph

serve as explicit, “hard-wired” join structures (i.e., structures that are 

not computed at query time as in a relational database). 

• What makes this more efficient in a graph database is that traversing

from one vertex to another is a constant time operation. 

* From: Marko A. Rodriguez, Peter Neubauer: The Graph Traversal Pattern.

Graph Data Management 2011: 29-46



Abstract Data Type Multi-Graph
G=(V,E,Σ,L) is a multi-graph:

 V is a finite set of nodes or vertices,

e.g. V={Term, forOffice, Organization,…}

 E ⊆ V x V is a set of edges representing 

binary relationship between elements in 

V, 

e.g. E={(forOffice,Term) 

(forOffice,Organization),(Office,Organization)

…} 

 Σ is a set of labels, 

e.g., Σ={domain, range, sc, type, …}

 L is a function: V x V  PowerSet(Σ), 
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e.g., L={((forOffice,Term),{domain}), ((forOffice,Organization),{range}),       

((_id0,AZ),{forOffice, forOrganization})… } 

From [ABFRV14]



Basic Operations

Given a graph G, the following are operations over G:

 AddNode(G,x): adds node x to the graph G.

 DeleteNode(G,x): deletes the node x from graph G.

 Adjacent(G,x,y): tests if there is an edge from x to y.

 Neighbors(G,x): nodes y s.t. there is an edge from x to y. 

 AdjacentEdges(G,x,y): set of labels of edges from x to y.

 Add(G,x,y,l): adds an edge between x and y with label l.

 Delete(G,x,y,l): deletes an edge between x and y with label l.

 Reach(G,x,y): tests if there a path from x to y.

 Path(G,x,y): a (shortest) path from x to y.

 2-hop(G,x): set of nodes y s.t. there is a path of length 2 from x to y, or from y to x.

 n-hop(G,x): set of nodes y s.t. there is a path of length n from x to y, or from y to x.

19

From [ABFRV14]



Implementation of Graphs
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Adjacency
List

For each node a list 
of neighbors.

If the graph is 
directed, adjacency 
list of i contains 
only the outgoing 
nodes of i.

Cheaper for 
obtaining the 
neighbors of a 
node.

Not suitable for 
checking if there 
is an edge 
between two 

nodes. 

Incidence  
List

Vertices and edges 
are stored as records 
or objects.

Each vertex stores 
incident edges.

Each edge stores 
incident nodes.  

Incidence 
Matrix

Bidimensional
representation of 
graph.

Rows represent  
Vertices.

Columns represent 
edges

An entry of 1 
represents that 
the Source 
Vertex is incident 
to the Edge.

Adjacency 
Matrix

Bidimensional
representation of 
graph.

Rows represent 
Source Vertices.

Columns represent 
Destination Vertices. 

Each entry with  1 
represents that 
there is an edge 
from the source 
node to the 
destination node.

Compressed 
Adjacency 

Matrix

Differential 
encoding 
between two 
consecutive 
nodes 

[Sakr and Pardede 2012]

From [ABFRV14]



Adjacency List
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V1

V2

V3

V4

(V1,{L2})(V1,{L2})(V1,{L2})(V1,{L2}) (V3,{L3})(V3,{L3})(V3,{L3})(V3,{L3})

(V1,{L1})(V1,{L1})(V1,{L1})(V1,{L1})
Properties:

 Storage: O(|V|+|E|+|L|)

 Adjacent(G,x,y): O(|V|)

 Neighbors(G,x): O(|V|)

 AdjacentEdges(G,x,y): O(|V|+|E|)

 Add(G,x,y,l): O(|V|+|E|)

 Delete(G,x,y,l): O(|V|+|E|)

L2 L3

L1

V1V1 V2V2 V3V3

V4V4

From [ABFRV14]



Implementation of Graphs
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Adjacency
List

For each node a list 
of neighbors.

If the graph is 
directed, adjacency 
list of i contains only 
the outgoing nodes 
of i.

Cheaper for 
obtaining the 
neighbors of a 
node.

Not suitable for 
checking if there is 
an edge between 

two nodes. 

Incidence  
List

Vertices and edges 
are stored as records 
of objects.

Each vertex stores 
incident edges.

Each edge stores 
incident nodes.  

Adjacency 
Matrix

Bidimensional
representation of 
graph.

Rows represent 
Source Vertices.

Columns represent 
Destination Vertices. 

Each entry with 1 
represents that 
there is an edge 
from the source 
node to the 
destination node.

Incidence 
Matrix

Bi-dimensional 
representation 

of graph.

Rows 
represent  
Vertices.

Columns 
represent 

edges

An entry of 1 represents that 
the Source Vertex is incident 

to the Edge.

Compressed 
Adjacency 

Matrix

Differential 
encoding 
between two 
consecutive 
nodes 

[Sakr and Pardede 2012]

From [ABFRV14]



Incidence List*
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Properties:

 Storage: O(|V|+|E|+|L|)

 Adjacent(G,x,y): O(|E|)

 Neighbors(G,x): O(|E|)

 AdjacentEdges(G,x,y): O(|E|)

 Add(G,x,y,l): O(|E|)

 Delete(G,x,y,l): O(|E|)

(source,L2)(source,L2)(source,L2)(source,L2) (source,L3)(source,L3)(source,L3)(source,L3)

(source,L1)(source,L1)(source,L1)(source,L1)

(destination,L3)(destination,L3)(destination,L3)(destination,L3)

(V4,V1)(V4,V1)(V4,V1)(V4,V1)

(V2,V1)(V2,V1)(V2,V1)(V2,V1)

(V2,V3)(V2,V3)(V2,V3)(V2,V3)

(destination,L2)(destination,L2)(destination,L2)(destination,L2) (destination,L1)(destination,L1)(destination,L1)(destination,L1)V1

V2

V3

V4

L1

L2

L3

L2 L3

L1

V1V1 V2V2 V3V3

V4V4

* Simplified version: each

edge has a different label

From [ABFRV14]



Adjacency
List

For each node a list 
of neighbors.

If the graph is 
directed, adjacency 
list of i contains only 
the outgoing nodes 
of i.

Cheaper for 
obtaining the 
neighbors of a 
node.

Not suitable for 
checking if there is 
an edge between 

two nodes. 

Incidence  
List

Vertices and edges are 
stored as records of 
objects.

Each vertex stores 
incident edges.

Each edge stores 
incident nodes.  

Adjacency 
Matrix

Bidimensional
graph 
representation.

Rows represent 
source vertices.

Columns represent 
destination vertices. 

Each non-null entry 
represents that 
there is an edge 
from the source 
node to the 
destination node.

Incidence 
Matrix

Bidimensional
graph 
representation.

Rows 
represent  
Vertices.

Columns 
represent 
edges

A non-null entry represents 
that the source vertex is 
incident to the Edge.

Implementation of Graphs

24

[Sakr and Pardede 2012]

From [ABFRV14]
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{L2} {L3}

{L1}

V1 V2 V3 V4

V1

V2

V3

V4

Adjacency Matrix
L2 L3

L1

V1V1 V2V2 V3V3

V4V4

Properties:

 Storage: O(|V|2)

 Adjacent(G,x,y): O(1)

 Neighbors(G,x): O(|V|)

 AdjacentEdges(G,x,y): O(|E|)

 Add(G,x,y,l): O(|E|)

 Delete(G,x,y,l): O(|E|)

From [ABFRV14]



Implementation of Graphs
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Adjacency
List

For each node a list 
of neighbors.

If the graph is 
directed, adjacency 
list of i contains only 
the outgoing nodes 
of i.

Cheaper for 
obtaining the 
neighbors of a 
node.

Not suitable for 
checking if there is 
an edge between 

two nodes. 

Incidence  
List

Vertices and edges are 
stored as records of 
objects.

Each vertex stores 
incident edges.

Each edge stores 
incident nodes.  

Adjacency 
Matrix

Bidimensional
graph 
representation.

Rows represent 
source vertices.

Columns represent 
destination vertices. 

Each non-null entry 
represents that 
there is an edge 
from the source 
node to the 
destination node.

Incidence 
Matrix

Bidimensional
graph 
representation.

Rows 
represent  
Vertices.

Columns 
represent 
edges

A non-null entry represents 
that the source vertex is 
incident to the Edge.

[Sakr and Pardede 2012]

From [ABFRV14]
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destination destination

source source

destination

source

L1 L2 L3

V1

V2

V3

V4

Incidence Matrix
L2 L3

L1

V1V1 V2V2 V3V3

V4V4

Properties:

 Storage: O(|V|x|E|)

 Adjacent(G,x,y): O(|E|)

 Neighbors(G,x): O(|V|x|E|)

 AdjacentEdges(G,x,y): O(|E|)

 Add(G,x,y,l): O(|V|)

 Delete(G,x,y,l): O(|V|)

From [ABFRV14]



Traversal Search

Breadth First 
Search

Expands shallowest 
unexpanded nodes 
first.

Unexpanded 
nodes are 
stored in queue. 

Depth First 
Search

Expands deepest 
unexpanded nodes 
first.

Unexpanded nodes are 
stored in a stack.

28

From [ABFRV14]
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7

8

2

1 3

4

5

6

0

2

1 3

4

5

6

0

1 Starting Node

First Level Visited Nodes

Second Level Visited Nodes

Third Level Visited Nodes

Breadth First Search

Notation:

From [ABFRV14]
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7

8

2

1 3

4

5

6

0

2

1 3

4

5

6

0

Depth First Search

1 Starting Node

First Level Visited Nodes

Second Level Visited Nodes

Third Level Visited Nodes

Notation:

From [ABFRV14]



Querying Graph DBs
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• A traversal refers to visiting elements (i.e. vertices and edges) in a graph in 

some algorithmic fashion. Query languages for graph databases allow for 

recursively traversing the labeled edges while checking for the existence

of a path whose label satisfies a particular regular condition (i.e., 

expressed in a regular language)

• Basically, a graph database G = (V,E) over a finite alphabet Σ consists of a 

finite set V of nodes and a set of labeled edges E ⊆ V ×Σ×V. 

• a path π in G from node v0 to node vm is a sequence of the form (v0, a1, 

v1)(v1, a2, v2) . . . (vm−1, am, vm), where (vi−1, ai, vi) is an edge in E, for each

1 ≤ i ≤ m. The label of π, denoted λ(π), is the string a1a2...am ∈ Σ
∗.

• A Regular path query is a regular expression L over Σ. The evaluation

L(G) of L over G is the set of pairs (u,v) of nodes in V for which there is a 

path π in G from u to v such that λ(π) satisfies L.

• Query languages for graph databases normally extend this class of queries



Graph Database Management Systems*

• A Graph Database Management System (GDBMS) is a system

that manages graph databases. Some GDBMSs are:

32

*From Graph Database Management Systems. Course on Big Data, prof. Riccardo Torlone

(Univ. Roma Tre), available at www.dia.uniroma3.it/~torlone/bigdata/materiale.html



Native graph storage and processing

• Some GDBMSs use native graph storage, which is

optimized and designed for storing and managing graphs.

• In contrast to relational DBMSs, these GDBMSs do not

store data in disparate tables. Instead they manage a single 

data structure.

• Coherently, they adopts a native graph processing: they

leverage index-free adjacency, meaning that connected

nodes physically “point” to each other in the database.

33



Index-free adjacency

• A database engine that utilizes index-free adjacency is one

in which each node maintains direct references to its

adjacent nodes; each node, therefore acts as a micro-index

of other nearby nodes, which is much cheaper than using

global indexes. 

• In other terms, a (graph) database G satisfies the index-free 

adjacency if the existence of an edge between two nodes v1

and v2 in G can be tested on those nodes and does not

require to access an external, global, index. 

• Locally, each node can manage a specific index to speed

up access to its outgoing edges

34



Non-native graph storage

• Not all graph database technologies use native graph storage, 

however. Some serialize the graph data into a relational

database, object-oriented databases, or other types of general-

purpose data stores. 

• GDBMSs of this kind do not adopt index-free-adjacency, but

resort to classical relational index mechanisms.

Note: Some authors consider index-free-adjacency a distinguishing

property for graph databases (i.e., a GDBMS not using index-free-

adjacency is not a graph DBMS). Alternatively (as we do in these

slides) it is possible to classify as graph database any database that

from the user’s perspective behaves like a graph database (i.e., exposes

a graph data model through CRUD operations)

35



Types of graph databases

• There are several different graph data models, 

which somehow generalizes the basic definition

we have seen before, including

– property graphs, 

– hypergraphs, 

– triple stores. 

36



Property-graph databases

• A property graph is a labeled directed multigraph G = (V, E) where every

node v ∈ N and every edge e ∈ E can be associated with a set of  <key, 

value> pairs, called properties. 

• Each edge represents a relationship between nodes and is associated with a 

label, which is the name of the relationship.

37



Property-graph databases
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name: Alice

age: 18

type: Group

name: Chess

type: Group

name: Chess

name: Bob

age: 22

Properties act as attributes

of entities or relationships, 

but in graph databases

there is no a-priori or rigid

schema



Querying property-graph databases
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• As we have seen, basic query languages for graph databases, as

Regular Path Queries (RPQs), essentially only retrieve their

topology.

• However, in property-graph databases we also want to access

data stored at the nodes and the edges (i.e., the properties).

• RPQs do not allow for this, but tailored languages (as the Neo4J 

Cypher) exist that enable property retrieval

• The execution of queries accessing properties, however, besides

expoiting adjacency, somehow relies on relational mechanisms:

– In the property graph model, it is common for the properties of the 

vertices (and sometimes edges) to be indexed using a tree structure

analogous, in many ways, to those used by relational databases. 



People and their friends example

40

name: 

Alberto Pepe

name: 

Alberto Pepe

name: …name: …

name: …name: …

……

A global index is used to 

access node whose name

property is ‘Alberto Pepe’



People and their friends example

1. Query the vertex.name index to find all the vertices with the name “Alberto 

Pepe” [O(log2n)] (where n is the number of nodes with the name property)

2. Given the vertex returned, get the k friend edges emanating from this vertex. 

[O(k + x)] ] (where k is the number of friends and x is the number of the other

outgoing edges)

3. Given the k friend edges retrieved, get the k vertices on the heads of those

edges. [O(k)] 

4. Given these k vertices, get the k name properties of these vertices. [O(ky)] 

(where y is the number of properties in each vertex) 41



Hyper-graph databases

• A relationship (called a hyper-edge) can connect any number of nodes, thus

can be useful where the domain consists mainly of many-to-many

relationships

• In the example below we can represent with a unique hyper-edge that Alice 

and Bob own together a Mini, a Range Rover and a Prius car. However, we

loose some flexibility in specifying some properties (e.g., who is the primary

owner)

• Notice that any hypergraph database can be encoded into a graph database

42



Triple stores

• Triple stores come from the Semantic Web movement, 

where researchers are interested in large-scale knowledge

inference by adding semantic markup to the links that

connect web resources. 

• A triple is a subject-predicate-object data structure. Using 

triples, we can capture facts, such as “Ginger dances with 

Fred” and “Fred likes ice cream.”

• The standard way to represent triples and query them is by 

means of RDF and SPARQL, respectively.  

43

Note: structuring information in triples does not per se realize the idea of the Semantic

Web, and thus it does not allow for knowledge inference. Nonetheless, triple stores

turned out to be a particularly useful format to exchange information on the Web and 

have become nowadays very popular, not only in the semantic web context.



• Introduction to Graph Databases

• Resource Description Framework (RDF)

• Querying RDF databases: The SPARQL 

language

• RDF storage

• Linked data

• Tools

44

Graph Databases
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Resource Description Framework

• RDF is a data model
 the model is domain-neutral, application-neutral and ready for 

internationalization

 besides viewing it as a graph data model, it can be also viewed as 

an object-oriented model (object/attribute/value)

• A standard XML syntax exists, which allows to 

specify RDF databases
 RDF data model is an abstract, conceptual layer independent of 

XML

 Consequently, XML is a transfer syntax for RDF, not a 

component of RDF

 In principle, RDF data might also occur in a form different from 

XML
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XML

• XML: eXtensible Mark-up Language

• XML documents are written through a user-

defined set of tags

• tags can be used to express additional properties of 

the various pieces of information (i.e., enriching it

with its “meaning”)
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XML: example

<course date=““““2014””””>

<title>Big Data Management</title>

<teacher>

<name>Domenico Lembo</name>

<email>lembo@dis.uniroma1.it</email>

</teacher>

<prereq>none</prereq>

</course>
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XML

• XML: document = labeled tree

• node = label + attributes/values + contents

<course date=““““...””””>

<title>...</title>

<teacher>

<name>...</name>

<email>...</email>

</teacher>

<prereq>...</prereq>

</course>

=
course

teachertitle prereq

name email
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RDF model

RDF model = set of RDF triples

triple = expression (statement)

(subject, predicate, object)

• subject = resource

• predicate = property (of the resource)

• object = value (of the property)

resource value
property
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RDF triples

example: “the document at 
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

has Ora Lassila as creator”

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

“Ora Lassila”

creator

 RDF model = graph

triple:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/ creator ““““OraLassila””””



51

RDF graph: example

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

“Ora Lassila”

dc:creator

“1999-02-22”

dc:date

“W3C”

dc:publisher
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Node and edge labels in RDF graphs

node and edge labels:

• URI - Uniform Resource Identifier 

• Literal, string that denotes a fixed resource (i.e., a value)

• blank node, i.e., an anonymous label, representing 

unnamed resources

but:

• a literal can only appear in object positions (that is, literals are  

are end nodes in an RDF graph)

• a blank node can only appear in subject or object positions

• remark: URIs can be used as predicates, i.e., graph nodes can 

be used as edge labels  (RDF has meta-modeling abilities)



Various types of literals

• (ex:thisLecture, ex:title, ”graph databases")

(untyped)

• (ex:thisLecture, ex:titlte, ”graph databases"@en)

(untyped, but assigned “English" (en) language)

• (ex:thisLecture, ex:titlte, "graph databases"^^xsd:string)

(explicit type string)

Other types:

– xsd:decimal

– xsd:integer

– xsd:float

– xsd:boolean

– xsd:date

– xsd:time
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Blank nodes: unidentifiable resources
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blank node (bnode) = RDF graph node with “anonymous label” (i.e., not 
associated with an URI)

Example: Marco knows someone which was born on the Epiphany day 

Marco foaf:knows _:X. 

_:X foaf:birthDate “01-06”. 

Marco “01-06”
foaf:knows foaf:birthDate



Blank nodes: unidentifiable resources
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Example: The name of the creator of the specification of the RDF syntax is

Ora Lassila and his email address is ora.lassila@nokia.com

http://www.w3.org/TR/1999/REC-rdf-syntax/19990222 dc:creator _:X. 

_:X myns:Name “Ora Lassila”.

_:X     myns:Email “ora.lassila@nokia.com”.

http://www.w3.org/TR/1999/
REC-rdf-syntax-19990222/

“Ora Lassila”
dc:creator

“ora.lassila@nokia.com”

myns:EMail

myns:Name



RDF vocabulary

• RDF assigns a specific meaning to certain terms,  the terms

defined by the URI prefix

http://www.w3.org/1999/02/22-rdf-syntax-ns#

(usually abbreviated as rdf:)

• Some examples (meaning explained in the following slides)
• rdf:type

• rdf:Seq, rdf:Bag, rdf:Alt

• rdf:_1, rdf:_2,..., rdf:li

• rdf:subject

• rdf:predicate

• rdf:object

• rdf:Statement

• rdf:Property

56
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Containers

• Containers are collections

– they allow grouping of resources (or literal values)

• Different types of containers exist

– bag - unordered collection (rdf:Bag)

– seq - ordered collection (= “sequence”) (rdf:Seq)

– alt - represents alternatives (rdf:Alt)

• It is possible to express statements regarding the container (taken as a 

whole) or on its members
rdf:_n – n-th member of a sequence

rdf:li – element of a collection

• Duplicate values are permitted (no mechanism to enforce unique value 

constraints)
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Containers

Example: The names of the creators of the RDF syntax
specification are (in order) Ora Lassila and Ralph Swick

http://www.w3.org/TR/REC-rdf-syntax/ dc:creator _:X. 

_:X rdf:type rdf:Seq.

_:X rdf:_1 “Ora Lassila”.

_:X rdf:_2 “Ralph Swick”.

http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/

“Ora Lassila”

rdf:_1

dc:creator

“Ralph Swick”

rdf:_2
rdf:Seq

rdf:type

The subject is The subject is 

an instance of 

the class 

occurring as 

object

The class of 

ordered 

containers.

The object is The object is 

the first 

element of 

the container 

occurring as 

subject
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Higher-order statements

• One can make RDF statements about other RDF 

statements

– example: “Ralph believes that the web contains one 

billion documents”

• Higher-order statements

– allow us to express beliefs (and other modalities)

– are important for trust models, digital signatures,etc.

– also: metadata about metadata

– are represented by modeling RDF in RDF itself

 basic tool: reification, i.e., representation of an 

RDF assertion as a resource



60

Reification

Reification in RDF = using an RDF statement as the 

subject (or object) of another RDF statement

Examples of statement that need reification to be 

expressed in RDF: 

• “the New York Times claims that Joe is the author 

of book ABC”

• “the statement “The technical report on RDF was 

written by Ora Lassila” was written by the Library 

of Congress”
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Reification

• RDF provides a built-in predicate vocabulary for 

reification:

• rdf:subject

• rdf:predicate

• rdf:object

• rdf:statement

• Using this vocabulary (i.e., these URIs from the rdf: 

namespace) it is possible to represents a triple through a 

blank node
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Reification: example

• the statement “The technical report on RDF was written by Ora 

Lassila” can be represented by the following four triples:
_:x rdf:predicate dc:creator.

_:x rdf:subject http://www.w3.org/TR/1999/REC-rdf-
syntax-19990222/.

_:x rdf:object “Ora Lassila”.

_:x rdf:type rdf:statement.

• The blank node _:x is the reification of the statement (it is an 

anonymous URI that represents the whole triple)

• Now, “The statement “The technical report on RDF was 

written by Ora Lassila” was written by the Library of 

Congress” can be represented using the bnode _:x, by adding 

to the above four triples the following triple:
_:x dc:creator “Library of Congress”.



Reification: example
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http://www.w3.org/TR/1999/REC-

rdf-syntax-19990222/ “Ora Lassila”dc:creator

“Library of 
Congress”

dc:creator

rdf:subject rdf:predicate

rdf:object
rdf:Statement

rdf:type

The statement “The technical report on RDF was written by Ora

Lassila” was written by the Library of Congress



Exercise

Draw the RDF graph that represents the following assertions:

• Document 1 was created by Paul

• Document 2 and Document 3 were created by the same

author (which is unknown)

• Document 3 says that Document 1 was published by the 

W3C

Use the predicates dc:creator and dc:publisher, and 

assume that the three documents are identified by the URIs

doc1, doc2, and doc3, respectively.
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Solution
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doc1 “Paul”

doc3

doc2
dc:creator

dc:creator

rdf:subject

dc:publisher

rdf:predicate

myns:says

dc:creator

“W3C”

rdf:object

rdf:Statement

rdf:type
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RDF syntaxes

RDF model = edge-labeled graph = set of triples

• graphical notation (graph)

• (informal) triple-based notation

e.g., (subject, predicate, object)

• formal syntaxes:

• N3 notation

• Turtle notation

• concrete (serialized) syntax: RDF/XML syntax
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RDF syntaxes

• N3 notation:

subject predicate object.

• Turtle (Terse RDF Triple Language) notation. Example:
@prefix 

rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

:mary rdf:type <http://www.ex.org/Gardener>.

:mary :worksFor :ElJardinHaus.

:mary :name "Dalileh Jones"@en.

_:john :worksFor :ElJardinHas.

_:john :idNumber "54321"^^xsd:integer.

• Concrete (serialized) syntax: RDF/XML syntax



Turtle Notation: Example*

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://example.org/stuff/1.0/> .

<http://www.w3.org/TR/rdf-syntax-grammar>

dc:title "RDF/XML Syntax Specification (Revised)" ;

ex:editor [

ex:fullname "Dave Beckett";

ex:homePage <http://purl.org/net/dajobe/>

] .

The example encodes an RDF database that expresses the following facts:

- The W3C technical report on RDF syntax and grammar, has the title RDF/XML 

Syntax Specification (Revised).

- That report's editor is a certain individual, who in turn

- Has full name Dave Beckett.

- Has a home page at http://purl.org/net/dajobe/.

68
*Taken from http://en.wikipedia.org/wiki/Turtle_(syntax) 



Turtle Notation: Example*

The example encodes an RDF database that expresses the following facts:

- The W3C technical report on RDF syntax and grammar, has the title RDF/XML Syntax

Specification (Revised).

- That report's editor is a certain individual, who in turn

- Has full name Dave Beckett.

- Has a home page at http://purl.org/net/dajobe/.

Here are the four triples of the RDF graph made explicit in N-Triples notation:

<http://www.w3.org/TR/rdf-syntax-grammar> <http://purl.org/dc/elements/1.1/

title> "RDF/XML Syntax Specification (Revised)" .

<http://www.w3.org/TR/rdf-syntax-grammar> <http://example.org/stuff/1.0/

editor> _:bnode .

_:bnode <http://example.org/stuff/1.0/fullname> "Dave Beckett" .

_:bnode <http://example.org/stuff/1.0/homePage> <http://purl.org/net/dajobe>.
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*Taken from http://en.wikipedia.org/wiki/Turtle_(syntax) 



Turtle Notation: Example*

@base <http://example.org/> .

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rel: <http://www.perceive.net/schemas/relationship/> .

<#green-goblin>

rel:enemyOf <#spiderman> ;

a foaf:Person ;    # in the context of the Marvel universe

foaf:name "Green Goblin" .

<#spiderman>

rel:enemyOf <#green-goblin> ;

a foaf:Person ;

foaf:name "Spiderman", "Человек-паук"@ru .

70
*Taken from http://www.w3.org/TR/turtle/



RDF/XML syntax

• A node in the RDF graph that represents a resource (labeled or not) is
represented by an element rdf:Description, while its label, if

any, is defined as the value of the rdf:about property

• An edge outgoing from a node N is represented as a sub-element of the 

element that represents N. The type of this sub-element is the label of 

the edge.

• The end node of an edge is represented as the content of the element

representing the edge. It is either a

– a value (if the end node contains a literal)

– or a new resource (if the end node contains a URI): in this case it is
represented by a sub-element of type rdf:Description

• Values   (literal) can be assigned with a type (the same defined in XML-

Schema)

71
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RDF/XML syntax: Example

<?xml version=“1.0”?>

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”   

xmlns:dc=“http://purl.org/dc/elements/1.1/”>

<rdf:Description rdf:about=“http://www.w3.org/TR/

REC-rdf-syntax”>

<dc:creator>Ora Lassila</dc:creator>

</rdf:Description>

</rdf:RDF>

http://www.w3.org/TR/REC-rdf-syntax/ “Ora Lassila”
dc:creator
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RDF/XML syntax: Example

<rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
<ex:editor>

<rdf:Description>
<ex:homePage>

<rdf:Description rdf:about="http://purl.org/net/dajobe/">
</rdf:Description>

</ex:homePage>
…….

</rdf:Description>
</ex:editor>

……
</rdf:Description>



RDF/XML syntax: simplifications

• A resource that is a literal and that is the object of a predicate 

may be encoded as the value of an attribute of the element that

represents the subject. The type of such element is the label of 

the predicate

• The URI associated with a resource that is the object of a 

predicate and that is not the subject of any predicate can be 
encoded as the value of an attribute rdf:resource

associated with the element that represents the predicate
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RDF/XML simplified syntax: Example

<?xml version=“1.0”?>

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”   

xmlns:dc=“http://purl.org/dc/elements/1.1/”>

<rdf:Description rdf:about=“http://www.w3.org/TR/

REC-rdf-syntax”>

<dc:creator>Ora Lassila</dc:creator>

</rdf:Description>

</rdf:RDF>

http://www.w3.org/TR/REC-rdf-syntax/ “Ora Lassila”
dc:creator

<rdf:Description rdf:about=“http://www.w3.org/TR/

REC-rdf-syntax” dc:creator=“Ora Lassila”/>
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RDF/XML simplified syntax: Example

<rdf:Description dc:creator=“Library of Congress” 

rdf:object=“Ora Lassila” >

<rdf:subject rdf:resource=“http://www.w3.org/TR/

REC-rdf-syntax”/>

<rdf:predicate rdf:resource=“dc:creator”/>

<rdf:type rdf:resource=“rdf:Statement”/>

</rdf:Description>

http://www.w3.org/TR/REC-rdf-syntax/ “Ora Lassila”dc:creator

“Library of 
Congress”

dc:creator

rdf:subject rdf:predicate rdf:object

rdf:Statement
rdf:type



Exercise 2: RDF/XML syntax

• Express the RDF graph of Exercise 1 through the 

RDF/XML syntax.
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myns:doc1 “Paul”

myns:doc3

myns:doc2
dc:creator

dc:creator

rdf:subject

dc:publisher

rdf:predicate

myns:dice

dc:creator

“W3C”

rdf:object

rdf:Statement

rdf:type



Exercise 2: solution

<?xml version=“1.0”?>

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:dc=“http://purl.org/dc/elements/1.1/”

xmlns=”http://www.dis.uniroma1.it/~poggi/esempi_rdf/”>

<rdf:Description rdf:about=“doc2”>

<dc:creator rdf:nodeID=“C”/>

</rdf:Description>

<rdf:Description rdf:about=“doc3”>

<dc:creator rdf:nodeID=“C”/>

<dice>

<rdf:Description rdf:object=“W3C”>

<rdf:type rdf:resource=“http://www.w3.org/1999/02/22-
rdf-syntax-ns#Statement”/>

<rdf:predicate rdf:resource=“http://purl.org/dc/
elements/1.1/publisher”/>

<rdf:subject>

<rdf:Description rdf:about=“doc1”           
dc:creator=“Paul”/>

</rdf:subject>

</rdf:Description>

</dice>

</rdf:Description>

</rdf:RDF>
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RDF Schema

RDFS = RDF Schema

• Defines small vocabulary for RDF: 

• Class, subClassOf, type

• Property, subPropertyOf

• domain, range

• corresponds to a set of RDF predicates:

 meta-level

special (predefined) “meaning”
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RDFS

• vocabulary for defining classes and properties

• vocabulary for classes:
• rdfs:Class (a resource is a class)

• rdf:type* (a resource is an instance of a

class)
• rdfs:subClassOf (a resource is a subclass

of another resource)

*Already part of RDF built-in vocabulary (cf. the namespace rdf)
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RDFS

vocabulary for properties:
•rdf:Property* (a resource is a property)

•rdfs:domain (denotes the first component of

a property)
•rdfs:range (denotes the second component

of a property)
•rdfs:subPropertyOf (expresses ISA

between properties)

*Already part of RDF built-in vocabulary (cf. the namespace rdf)
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RDFS - example

JeenFrank

rdf:type

hasSupervisor

Student Researcher

rdf:type

rdfs:Classrdfs:Resource rdf:Property
rdf:type

rdf:type

rdfs:subClassOf

rdfs:subClassOf

Legenda
RDF instance
RDFS schema
predefined in RDFS
logic. implied by the 
RDFS semantics

rdfs:domain

Person

rdfs:subClassOfrdfs:subClassOf

rdfs:rangehas
Supervisor

rdf:type

rdf:type

rdf:type

rdf:type

rdfs:subClassOf
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RDFS – example: triples

Student rdfs:subClassOf Person.

Researcher rdfs:subClassOf Person.

hasSupervisor rdfs:range Researcher.

hasSupervisor rdfs:domain Student.

Frank rdf:type Student.

Jeen rdf:type Researcher.

Frank hasSupervisor Jeen.
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RDFS – example: XML syntax
<?xml version=“1.0”?>

<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”>

<rdf:Description rdf:about=“#Student”>

<rdfs:subClassOf rdf:resource=“#Person”/>

</rdf:Description>

<rdf:Description rdf:about=“#Researcher”>

<rdfs:subClassOf rdf:resource=“#Person”/>

</rdf:Description>

<rdf:Description rdf:about=“#hasSupervisor”>

<rdfs:domain rdf:resource=“#Student”/>

<rdfs:range rdf:resource=“#Researcher”/>

</rdf:Description>

<rdf:Description rdf:about=“#Frank”>

<rdf:type rdf:resource=“#Student”/>

<hasSupervisor rdf:resource=“#Jeen”/>

</rdf:Description>

<rdf:Description rdf:about=“#Jeen”>

<rdf:type rdf:resource=“#Researcher”/>

</rdf:Description>

</rdf:RDF>
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RDFS

example (classes):

(ex:MotorVehicle, rdf:type, rdfs:Class)

(ex:PassengerVehicle, rdf:type, rdfs:Class)

(ex:Van, rdf:type, rdfs:Class)

(ex:Truck, rdf:type, rdfs:Class)

(ex:MiniVan, rdf:type, rdfs:Class)

(ex:PassengerVehicle, rdfs:subClassOf, 

ex:MotorVehicle)

(ex:Van, rdfs:subClassOf,  ex:MotorVehicle)

(ex:Truck, rdfs:subClassOf,  ex:MotorVehicle)

(ex:MiniVan, rdfs:subClassOf, ex:Van)

(ex:MiniVan, rdfs:subClassOf, ex:PassengerVehicle)
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RDFS

example (classes):
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RDFS

example (properties):

(ex:weight, rdf:type, rdf:Property)

(ex:weight, rdfs:domain, ex:MotorVehicle)

(ex:weight, rdfs:range, Integer)
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RDFS: meta-modeling abilities

example (meta-classes):

(ex:MotorVehicle, rdf:type, rdfs:Class)

(ex:myClasses, rdf:type, rdfs:Class)

(ex:MotorVehicle, rdf:type,  ex:myClasses)
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RDFS: XML syntax

example:

<rdf:Description rdf:about="MotorVehicle">
<rdf:type resource="http://www.w3.org/...#Class"/>
<rdfs:subClassOf rdf:resource="http://www.w3.org/...#Resource"/>

</rdf:Description>

<rdf:Description rdf:about="Truck">
<rdf:type rdf:resource="http://www.w3.org/...#Class"/>
<rdfs:subClassOf rdf:resource="#MotorVehicle"/>

</rdf:Description>
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RDFS: XML syntax

example (cont.):

<rdf:Description rdf:about="registeredTo">
<rdf:type resource="http://www.w3.org/...#Property"/>
<rdfs:domain rdf:resource="#MotorVehicle"/>
<rdfs:range rdf:resource="#Person"/>

</rdf:Description>

<rdf:Description rdf:about=”ownedBy">
<rdf:type resource="http://www.w3.org/...#Property"/>
<rdfs:subPropertyOf rdf:resource="#registeredTo"/>

</rdf:Description>
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RDF + RDFS: semantics

• what is the exact meaning of an RDF(S) graph?

• initially, a formal semantics was not defined!

• main problems:

• bnodes

• meta-modeling

• formal semantics for RDFS vocabulary

• recently, a model-theoretic semantics has been 

provided 

formal definition of entailment and query     
answering over RDF(S) graphs
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Incomplete information in RDF graphs

• bnodes = existential values (null values)

 introduce incomplete information in RDF graphs

• an RDF graph can be seen as an incomplete 

database represented in the form of a naïve table, 

i.e., relational tables containing values and named 

existential variable (also called labeled nulls)

• an RDF graph can be thus represented by a unique 

(naïve) table T, with values being constants or 

named existential variables
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RDF + RDFS: semantics

problems with meta-data:

(#a rdf:type #C)

(#C rdf:type #R)

(#R rdf:type #a)

or

(#C rdf:type #C)

are correct (formally meaningful) RDF statements

 but no intuitive semantics
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Formal semantics for RDF + RDFS

• formal semantics for RDFS vocabulary

• RDFS statements = constraints over the RDF 

graph

• entailment in RDF + RDFS = reasoning (query 

answering) over an incomplete database with 

constraints



Exercise 3: RDF/RDFS model

• Draw the graph representing the following

assertions

– URI1 and URI2 are classes

– URI3 is a property

– URI4 is an instance of the class URI1

– URI5 and URI6 are instances of the class URI2

– URI3 has URI1 as domain and URI2 as range

– (URI4, URI6) is an instance of the property URI3

• Express the graph in XML syntax.
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Exercise 3: solution (triples)

URI1 rdf:type rdfs:Class.

URI2 rdf:type rdfs:Class.

URI3 rdf:type rdf:Property.

URI4 rdf:type URI1.

URI5 rdf:type URI2.

URI6 rdf:type URI2.

URI3 rdfs:domain URI1.

URI3 rdfs:range URI2.

URI4 URI3 URI6.
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Exercise 3: solution (graph)
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URI4

URI3

URI6
URI3

URI1

rdf:Property

rdfs:Class

URI2

URI5

rdf:typerdf:type

rdf:type

rdf:type

rdf:type rdf:type

rdfs:domain rdfs:range



Exercise 3: solution (XML syntax)
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<?xml version=“1.0”?>
<rdf:RDF xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”>

<rdf:Description rdf:about=“URI1”>
<rdf:type rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Class”/>

</rdf:Description>

<rdf:Description rdf:about=“URI2”>
<rdf:type rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Class”/>

</rdf:Description>

<rdf:Description rdf:about=“URI3”>
<rdf:type rdf:resource=“http://www.w3.org/1999/02/22-rdf-syntax-ns#Property”/>
<rdfs:domain rdf:resource=“URI1”/>
<rdfs:range rdf:resource=“URI2”/>

</rdf:Description>

<rdf:Description rdf:about=“URI4”>
<rdf:type rdf:resource=“http://www.w3.org/2000/01/rdf-schema#Class”/>
<URI3 rdf:resource=“URI6”/>

</rdf:Description>

<rdf:Description rdf:about=“URI5”>
<rdf:type rdf:resource=“URI2”/>

</rdf:Description>

<rdf:Description rdf:about=“URI6”>
<rdf:type rdf:resource=“URI2”/>

</rdf:Description>

</rdf:RDF>



• Introduction to Graph Databases

• Resource Description Framework (RDF)

• Querying RDF databases: The SPARQL 

language

• RDF storage

• Linked data

• Tools

99

Graph Databases



100

Querying RDF: SPARQL

Simple Protocol And RDF Query Language

• W3C standardisation effort similar to the XQuery

query language for XML data

• Data Access Working Group (DAWG)

• Suitable for remote use (remote access protocol)
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SPARQL – query structure

• SPARQL query includes, in the following order:

– prefix declaration, to abbreviate URIs (optional)

– dataset definitions, to specify the graph to be queried (they can be more than
one)

– SELECT clause, to specify the information to be returned

– WHERE clause, to specify the query pattern, i.e., the conditions that have to be 
satisfied by the triples of the dataset

– additional modifiers, to re-organize the results of the query (optional)

# prefix declaration

PREFIX es: <...>

...

# dataset definition

FROM <...>

# data to be returned

SELECT ...

# graph pattern specification

WHERE { ...}

# modifiers

ORDER BY ...
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SPARQL – the WHERE clause

• The WHERE clause contains a basic graph pattern (BGP), 

consisting of: 

– a set of triples separated by "."

• "." has the semantics of the AND

• object, predicate and/or subject can be variables

• It also possibly contains:

– a FILTER a condition that, using Boolean expressions, specifies

some constraints that must be satisfied by the result tuples; 

– an OPTIONAL condition that indicates a pattern that may (but

does not need to) be satisfied by a subgraph, to produce a tuple

in the result;

– other operators (e.g., UNION)
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SPARQL – example

PREFIX dct: <http://purl.org/dc/terms/> 
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
SELECT ?author 
FROM <http://thedatahub.org/dataset/bluk-bnb>
WHERE { ?x dct:creator ?y. 

?x dct:title "Romeo and Juliet".
?y foaf:name ?author} 

• Variables are outlined through the "?" prefix ("$" is also possible). 

• The ?author variable will be returned as result. 

• The FROM clause specifies the URI of the graph to be queried

• The SPARQL query processor returns all hits matching the pattern of the 

four RDF-triples. 

• "property orientation" (class matches can be conducted solely through class-

attributes/properties)
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SPARQL – query evaluation

The query returns all resources R for which there are resources 
X, Y, such that replacing variables ?authors, ?x and ?y, 
respectively, you get the triples in the queried graph.

dct:creator

“Romeo and Juliet”
dct:title

foaf:name

?x ?y ?author

dct:creator

“Romeo and Juliet”dct:title

foaf:name “William 
Shakespeare”

dct:creator

“Romeo and Juliet”dct:title

foaf:name “Richard 

Appignanesi”

bnb:resource/013567865 bnb:person/AppignanesiRichard

bnb:resource
/015432907

bnb:person/
ShakespeareWilliam1564-1616

author

“Richard Appignanesi”

“William Shakespeare”

QUERY

RESULT

QUERIED GRAPH
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SPARQL endpoints

• SPARQL queries are performed on RDF dataset (i.e, graphs)

• A SPARQL endpoint accepts queries and returns results via the HTTP 
protocol

– generic endpoints query all RDF datasets datasets that are accessible
via the Web
• http://semantic.ckan.net/sparql, 
http://lod.openlinksw.com/sparql

– Dedicated endpoints are intended to query one or more specific dataset
• http://bnb.data.bl.uk/sparql, 
http://dbpedia.org/sparql ...

• The FROM clause, in principle,  is mandatory, but

– when the endpoint is dedicated, typically, you can omit it in the 
specification of queries over such endpoint

– when the endpoint is generic, there is often a default dataset that is
queried in the case in which the FROM clause is not specified

-> In our examples, we often omit the FROM clause, implicitly assuming we
are querying specific endpoints



106

SPARQL results

• The result of a query is a set of tuples, whose structure

(labels and cardinality) reflects what has been specified

in the SELECT clause

• The SPARQL endpoint typically allows one to indicated

the syntax for the result

– XML

– HTML

– Notation3

– …

• As an example, look at the generic SPARQL endpoint
http://lod.openlinksw.com/sparql 
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SPARQL query – example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .

_:a foaf:mbox <mailto:jlow@example.com> . 

_:b foaf:name "Peter Goodguy" . 

_:b foaf:mbox <mailto:peter@example.org> . 

_:c foaf:mbox <mailto:carol@example.org> . 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?name ?mbox 

WHERE { ?x foaf:name ?name .

?x foaf:mbox ?mbox } 

“Johnny Lee Outlaw” <mailto:jlow@example.com>

“Peter Goodguy” <mailto:peter@example.com>

RDF graph:

query:

result:
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SPARQL – use of filters: example

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .

_:a foaf:mbox <mailto:jlow@example.com> . 

_:b foaf:name "Peter Goodguy" . 

_:b foaf:mbox <mailto:peter@example.org> . 

_:c foaf:mbox <mailto:carol@example.org> . 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?name ?mbox 

WHERE { ?x foaf:name ?name .

?x foaf:mbox ?mbox .

FILTER regex(?name, "^J") } 

“Johnny Lee Outlaw” <mailto:jlow@example.com>

RDF graph:

query:

result:
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Predicates that can be used

in the FILTER clause

• Logical connectives: 

!      (NOT) 

&&  (AND) 

||      (OR)

• Comparison: >, <, =, != (not equal), IN, NOT 

IN,..

• Test: isURI, isBlank, isLiteral, isNumeric, ...

• ... 



SPARQL – example of query on DBPedia
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• Return the worldwide landlocked countries with more 
than 15 millions of inhabitants

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>        

PREFIX type: <http://dbpedia.org/class/yago/>

PREFIX prop: <http://dbpedia.org/property/>

SELECT ?country_name ?population

WHERE {

?country rdf:type type:LandlockedCountries. 

?country rdfs:label ?country_name. 

?country prop:populationEstimate ?population .    

FILTER (?population > 15000000)} 

• Execute the query on the DBPedia endpoint
(http://dbpedia.org/snorql/)
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SPARQL – optional patterns: example 1

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

_:a foaf:name "Johnny Lee Outlaw" .

_:a foaf:mbox <mailto:jlow@example.com> . 

_:b foaf:name "Peter Goodguy" . 

_:b foaf:mbox <mailto:peter@example.org> . 

_:c foaf:mbox <mailto:carol@example.org> . 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?name ?mbox 

WHERE { ?x foaf:mbox ?mbox .

OPTIONAL {?x foaf:name ?name } } 

“Johnny Lee Outlaw” <mailto:jlow@example.com>

“Peter Goodguy” <mailto:peter@example.com>

<mailto:carol@example.org>

RDF graph:

query:

result:
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SPARQL – optional patterns: example 2

@prefix foaf: <http://xmlns.com/foaf/0.1/> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.

_:a rdf:type foaf:Person . 

_:a foaf:name "Alice" . 

_:a foaf:mbox <mailto:alice@example.com> . 

_:a foaf:mbox <mailto:alice@work.example> . 

_:b rdf:type foaf:Person . 

_:b foaf:name "Bob" . 

PREFIX foaf: <http://xmlns.com/foaf/0.1/> 

SELECT ?name ?mbox 

WHERE { ?x foaf:name ?name . 

OPTIONAL { ?x foaf:mbox ?mbox } } 

“Alice” <mailto:alice@example.com>

“Alice” <mailto:alice@work.example>

“Bob”



SPARQL – optional patterns: example 3
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• Return all resources contained in the dataset of the British National 
Bibliography, whose title is "Romeo and Juliet", along with the 10-digit 
ISBN and the 13-digit ISBN, if they have them

prefix dct:<http://purl.org/dc/terms/> 

prefix bibo:<http://purl.org/ontology/bibo/>

select ?x ?i10 ?i13

from <http://thedatahub.org/dataset/bluk-bnb>

WHERE {?x dct:title "Romeo and Juliet".

OPTIONAL {?x bibo:isbn10 ?i10}.

OPTIONAL {?x bibo:isbn13 ?i13}}

• Run the query on the generic endpoint of OpenLink Software 
(http://lod.openlinksw.com/sparql) and compare the results
obtained with those returned by the version of the query in which ?i10 and 
?i13 are not optional. 



SPARQL – UNIONs of graph patterns
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A graph pattern can be defined as the union of  two (or more) graph
patterns

Example: Return all the resources stored in the dataset of the British
National Bibliography, whose title is "Romeo and Juliet" and have
either a 10-digits ISBN or a 13 digits ISBN

prefix dct:<http://purl.org/dc/terms/> 

prefix bibo:<http://purl.org/ontology/bibo/>

select ?x ?i

from <http://thedatahub.org/dataset/bluk-bnb>

WHERE {{?x dct:title "Romeo and Juliet".

?x bibo:isbn10 ?i} UNION 

{?x dct:title "Romeo and Juliet".

?x bibo:isbn13 ?i}}



SPARQL – “Querying predicates”
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• In the graph pattern of a SPARQL query it is possible to 

label a predicate with a variable

• Example: which are the properties of the resource

<http://bnb.data.bl.uk/id/resource/015432907>?

select distinct ?p

from <http://thedatahub.org/dataset/bluk-bnb>

where {<http://bnb.data.bl.uk/id/resource/  

015432907> ?p ?v}



Exercise 4: SPARQL queries

Express through a SPARQL query the following 

request:

• Return the URIs that have both an author and a 
creation date (you may use dc:creator and 

dc:date as predicates)
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Exercise 4: solution

PREFIX dc: <http://purl.org/dc/elements/1.1/>

SELECT ?x

WHERE { ?x dc:creator ?y .

?x dc:date ?z . }
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Exercise 5: SPARQL queries

Express through a SPARQL query the following 

request:

• Return those predicates that have both 
myns:URI1 and myns:URI2 as subjects, 

where myns is the name space 
“http://www.dis.uniroma1.it/~pogg

i/esempi_rdf/”
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Exercise 5: solution

PREFIX myns: 

<http://www.dis.uniroma1.it/~poggi/esempi_rdf/> 

SELECT ?x

WHERE { myns:uri1 ?x ?y .

myns:uri2 ?x ?z . }
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Exercise 6:  SPARQL queries

Express through a SPARQL query the following 

request:

• Return those predicates that have either 
myns:URI1 or myns:URI2 as subjects, where 

myns is the name space 
“http://www.dis.uniroma1.it/~pogg

i/esempi_rdf/”
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Exercise 6: solution

PREFIX myns: 

<http://www.dis.uniroma1.it/~poggi/esempi_rdf/> 

SELECT ?x

WHERE { { myns:uri1 ?x ?y } UNION

{ myns:uri2 ?x ?z } }
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Exercise 7: SPARQL queries

Express through a SPARQL query the following 

request:

• Return the name of the authors of resources that 

have a creation date (you may use the predicates 
dc:creator, dc:date, and foaf:name) 
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Exercise 7: solution

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?z

WHERE { ?x dc:creator ?y .

?y foaf:name ?z . 

?x dc:date ?w }
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Exercise 8: SPARQL queries

Express through a SPARQL query the following 

request:

• Return the names of the authors and the creation 

date of resources that have an author (who has a 

name) and possibly have a creation date.
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Exercise 8: solution

PREFIX dc: <http://purl.org/dc/elements/1.1/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?z ?w

WHERE { ?x dc:creator ?y .

?y foaf:name ?z . 

OPTIONAL { ?x dc:date ?w } }
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SPARQL 1.1: property paths

• SPARQL 1.1 (released in 2013) extends the first 

varsion of SPARQL in different ways (e.g., aggregate 

functions, entailment regimes)

• In particular, it allows for expressing property paths 

in queries

• A property path is essentially a regular expression 

using properties (URIs)

• Property paths allow for expressing paths of arbitrary 

length along the RDF graph, thus providing a 

fundamental graph-oriented feature to SPARQL
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Property paths in SPARQL

Syntax Form Property Path Expr. Name Matches

iri PredicatePath An IRI. A path of length one.

^elt InversePath Inverse path (object to subject).

elt1 / elt2 SequencePath A sequence path of elt1 followed by elt2.

elt1 | elt2 AlternativePath A alternative path of elt1 or elt2 (all possibilities are tried).

elt* ZeroOrMorePath
A path that connects the subject and object of the path by 

zero or more matches of elt.

elt+ OneOrMorePath
A path that connects the subject and object of the path by 

one or more matches of elt.

elt? ZeroOrOnePath
A path that connects the subject and object of the path by 

zero or one matches of elt.

!iri or !(iri1| ...|irin) NegatedPropertySet
Negated property set. An IRI which is not one of irii. !iri is 

short for !(iri). 

!^iri or !(^iri1| ...|^irin) NegatedPropertySet

Negated property set where the excluded matches are 

based on reversed path.

That is, not one of iri1...irin as reverse paths. !^iri is short 

for !(^iri). 

!(iri1| ...|irij|^irij+1| ...|^irin) NegatedPropertySet
A combination of forward and reverse properties in a 

negated property set. 

(elt) A group path elt, brackets control precedence.
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Exercise 9: property paths

Express through a SPARQL query the following 

request:

• Return the names of all the ancestors and the 

descendants of John, assuming that the RDF 

graph uses the properties :hasFather and 

:hasMother to express kinship relations.
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Exercise 9: solution

PREFIX ex: <http://example.org/example/>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?z

WHERE { ex:John (ex:hasFather | ex:hasMother)+ ?x 

.

?x foaf:name ?z . } 

UNION

{ ?x (ex:hasFather | ex:hasMother)+ 

ex:John .

?x foaf:name ?z . } 
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Exercise 10: property paths

Express through a SPARQL query the following 

request:

• Return all the classes which John belongs to.
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Exercise 10: solution

PREFIX ex: <http://example.org/example/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#> 

SELECT ?z

WHERE { ex:John rdf:type ?c .

?c rdfs:subClassOf* ?x . } 

Or, equivalently:

PREFIX ex: <http://example.org/example/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-

schema#> 

SELECT ?z

WHERE { ex:John rdf:type/rdfs:subclassOf* ?c . } 
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RDF Storage*

• RDF data management has been studied in a variety of contexts. 
This variety is actually reflected in a richness of the perspectives
and approaches to storage and indexing of RDF datasets, typi-
cally driven by particular classes of query patterns and inspired
by techniques developed in various research communities. 

• In the literature, we can identify three main basic perspectives
underlying this variety. 

• The relational perspective. 

• The entity perspective. 

• The pure graph-based perspective. 

• From: Storing and Indexing Massive RDF Data Sets. Yongming Luo, Francois 

Picalausa, George H.L. Fletcher, Jan Hidders, and Stijn Vansummeren. In Semantic

Search over the Web. Springer. 2012
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The relational perspective

• An RDF graph is seen just as a particular type of relational data, 
and techniques developed for storing, indexing and answering
queries on relational data can hence be reused and specialized for 
storing and indexing RDF graphs. 

• The most naive approach in this respect is simply to store all
RDF triples in a single table over the relation schema (subject, 
predicate, object). Some implementations include an additional
context column in order to store RDF datasets rather than single 
RDF graphs. In this case, the context column specifies the IRI of 
the named graph in which the RDF triple occurs. 

• This kind of representation is known as the vertical
representation
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The relational perspective –

Vertical representation
• Due to the large size of the RDF graphs and the potentially large 

number of self-joins required to answer queries, care must be taken to 
devise an efficient physical layout with suitable indexes to support
query answering. 

• So-called Unclustered BTree indexes are four different sets of BTree
indexes on the triple table (s,p,o): 

• an index on the subject column (s) alone; an index on the property (p) 
column alone, and index on the object column (o) alone. 

• a combined index on subject and property (sp), as well as an index on the 
object column (o) alone. 

• a combined index on property and object (po).

• a combined clustered index on all columns together (spo). 

• Clustered BTree indexes, instead,  provide various sorted versions of 
the triple store table according to various permutation of the sequence
s,p,o, allowing fast access to clusters of trees
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The relational perspective –

Horizontal representation

• A different approach under the relational perspective
provides an horizontal representation of RDF 

• According to such representation, data is conceptually
stored in a single table that has one column for each
predicate value that occurs in the RDF graph, and one row
for each subject value. For each (s,p,o) triple, the object o is
placed in the p column of row s. 
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The horizontal representation - example

rdf triple

relational

horizontal

representation
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The horizontal representation

• As can be seen from the previous example, it is rare that a 

subject occurs with all possible predicate values, leading to 

sparse tables with many empty cells. Care must hence be 

taken in the physical layout of the table to avoid storing the 

empty cells. 

• Also, since it is possible that a subject has multiple objects

for the same predicate (e.g., user8604 has multiple phone

numbers), each cell of the table represents in principle a set 

of objects, which again must be taken into account in the 

physical layout. 
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The horizontal representation –

property tables

• To minimize the storage overhead caused by empty cells, 

the so-called property-table approach concentrates on 

dividing the wide table in multiple smaller tables containing

related predicates

• For example, in the music fan RDF graph, a different table

could be introduced for Works, Fans, and Artists. In this

scenario, the Works table would have columns for 

Composer, FileType, MediaType, and Title, but would not

contain the unrelated phone or friendOf columns. 

• How to divide the wide table into property tables is up to the 

designers (supports for this is provided by some RDF tools)
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The horizontal representation –

vertical partitioning

• The so-called vertically partitioned database approach (not

to be confused with the vertical representation approach) 

takes the decomposition of the horizontal representation to 

its extreme: 

each predicate column p of the horizontal table is

materialized as a binary table over the schema (subject, 

p). Each row of each binary table essentially corresponds

to a triple. 

• Note that, hence, both the empty cell issue and the multiple 

object issue are solved at the same time. 
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The relational perspective –

storage of URIs and literals

• Indipendently from the approach followed, under the relational

storage of RDF graphs a certain policy is commonly addressed on 

how to store values in tables: rather than storing each URI or 

literal value directly as a string, implementations usually

associate a unique numerical identifier to each resource and store

this identifier instead. Indeed,
• since there is no a priori bound on the length of the URIs or literal

values that can occur in RDF graphs, it is necessary to support

variable-length records when storing resources directly as strings

• RDF graphs typically contain very long URI strings and literal

values that, in addition, are frequently repeated in the same RDF 

graph.

• Unique identifiers can be computed in two general ways: (i) applying a 

hash function to the resource string; (ii) maintaining a counter that is

incremented whenever a new resource is added. In both cases, 

dictionary tables are used to translate encoded values into URIs and 

literals
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The entity perspective for 

storing RDF graphs

The second basic perspective, originating from the information 

retrieval community, is the entity perspective:

• Resources in the RDF graph are interpreted as “objects”, or 

“entities” 

• each entity is determined by a set of attribute-value pairs

• In particular, a resource r in RDF graph G is viewed as an 

entity with the following set of (attribute,value) pairs: 
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The entity perspective - example

rdf triples

entity view
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The entity perspective

• Techniques from the information retrieval literature can then

be specialized to support queries patterns that retrieve

entities based on particular attributes and/or values

• For example, in the previous representation we have that

user8604 is retrieved when searching for entities born in 

1975 (i.e., have 1975 as a value on attribute birthdate) as

well as when searching for entities with friends who like

Impressionist music. Note that entity user3789 is not

retrieved by either of these queries. 

• Specific tools provide peculiar solutions to these problems
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The graph-based perspective for 

storing RDF graphs

• Under this graph-based perspective, the focus is on 

supporting navigation in the RDF graph when viewed as a 

classical graph in which subjects and objects form the 

nodes, and triples specify directed, labeled edges. The aim is

therefore to natively store RDF dataset as graphs

.

• Typical query patterns supported in this perspective are 

graph-theoretic queries such as reachability between nodes.

• The major issue under this perspective is how to explicitly

and efficiently store and index the implicit graph structure. 
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The graph-based perspective for 

storing RDF graphs
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RDF in the real world

• RDF and SPARQL are W3C standards

• Widespread use for metadata representation, e.g.

• Meta Content Framework (MCF) developed by Apple as a 
specification of a content format for structuring metadata 
about web sites and other data (it is specified in a language 
which is a sort of ancestor of RDF)

• Adobe XMP (Extensible Metadata Platform), an RDF based 
schema that offers properties that provide basic descriptive 
information on files

• Oracle supports RDF, and provides an extension of SQL to 
query RDF data

• HP has a big lab (in Bristol) developing specialized data 
stores for RDF (it also initiated the development of the 
Jena framework for RDF graph management, carried out 
until october 2009 – then by Apache Software foundation )
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RDF in the real world

• current main application of RDF: linked data

• linked data = using the Web to create typed links
between data from different sources

• i.e.: create a Web of data

• DBpedia, Geonames, US Census, EuroStat, 
MusicBrainz, BBC Programmes, Flickr, DBLP, 
PubMed, UniProt, FOAF, SIOC, OpenCyc, 
UMBEL, Virtual Observatories, freebase,…

• each source: up to several million triples

• overall: over 31 billions triples (2012)
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Linked Data

Linked Data: set of best practices for publishing and connecting 
structured data on the Web using URIs and RDF

Basic idea: apply the general architecture of the World Wide Web 
to the task of sharing structured data on global scale

• The Web is built on the idea of setting hyperlinks between 
documents that may reside on different Web servers. 

• It is built on a small set of simple standards: 
• Global identification mechanism: URIs, IRIs
• Univeral access mechanism: HTTP
• Standardized content format: HTML

Linked Data builds directly on Web architecture and applies this 
architecture to the task of sharing data on global scale
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Linked data principles

1. Use URIs as names for things.

2. Use HTTP URIs, so that people can look up those names 

(dereferenceable URIs).

3. When someone looks up a URI, provide useful information, 

using the standards (RDF, SPARQL).

4. Include links to other URIs, so that they can discover more 

things.

Dereferenceability = URIs are not just used for identifying 

entities: since they can be used in the same way as URLs, they also 

enable locating and retrieving resources describing and 

representing these entities on the Web.
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Linked data principles

Just as hyperlinks in the classic Web connect documents into a 

single global information space, Linked Data uses hyperlinks to 

connect disparate data into a single global data space. 

These links, in turn, enable applications to navigate the data space. 

For example, a Linked Data application that has looked up a URI 

and retrieved RDF data describing a person may follow links from 

that data to data on different Web servers, describing, for instance, 

the place where the person lives or the company for which the 

person works. 
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Linked Data lifecycle

1. Extraction

2. Storage & Querying

3. Authoring

4. Linking

5. Enrichment

6. Quality Analysis

7. Evolution & Repair

8. Search, Browsing & 
Exploration



Linked Data lifecycle

• Extraction: Map Non-RDF data into the RDF format

• Storage & Querying: Once there is a critical mass of RDF 

data, mechanisms have to be in place to store, index and 

query this RDF data efficiently.

• Authoring: Users must have the opportunity to create new 

structured information or to correct and extend existing

ones

• Linking: Links between related entities have to be 

established (possibly applying schema mathing and record 

linkage techniques).

• Enrichment: Row RDF data should be enriched with higher

level structures (e.g., schema information)
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Linked Data lifecycle

• Quality Analysis: As with the Document Web, the Data 

Web contains a variety of information of different quality. 

Hence, it is important to devise strategies for assessing the 

quality of data published on the Data Web 

• Evolution & Repair: Once problems are detected, 

strategies for repairing these problems and supporting the 

evolution of Linked Data are required. 

• Search, Browsing & Exploration: users have to be 

empowered to browse, search and explore the information 

available on the Data Web in a fast and user friendly

manner. 
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Open/Closed Linked Data

Linked data may be open (publicly accessible and reusable) or 
closed

Linking Open Data (LOD): project which aims at creating an
open Linked Data network

http://lod-cloud.net
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The LOD cloud diagram

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
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Use of RDF vocabularies

• Crucial aspect of Linked Data (and of RDF usage in 
general): which URIs represent predicates (links)?

• Recommended practice in LOD: if possible, use 
existing RDF vocabularies (and preferably the 
most popular ones)

• In this way, a de-facto standard is created: all LOD 
sites use the same URI to represent the same 
property, and the semantics of such properties is 
shared (i.e., known by every application)

• This makes it possible for all applications to really 
understand the semantics of links
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Popular vocabularies

• Friend-of-a-Friend (FOAF), vocabulary for describing people

• Dublin Core (DC) defines general metadata attributes

• Semantically-Interlinked Online Communities (SIOC), 

vocabulary for representing online communities

• Description of a Project (DOAP), vocabulary for describing 

projects

• Simple Knowledge Organization System (SKOS), vocabulary 

for representing taxonomies and loosely structured knowledge

• Music Ontology provides terms for describing artists, albums 

and tracks

• Review Vocabulary, vocabulary for representing reviews

• Creative Commons (CC), vocabulary for describing license 

terms
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RDF/SPARQL tools

• Jena = Java framework for handling RDF models 
and SPARQL queries (http://jena.sourceforge.net/)

• ARC = PHP implementation of a RDF/SPARQL 
engine (http://arc.semsol.org/) 

• Virtuoso = database system able to deal with RDF 
data and SPARQL queries, based on the use of an 
object-relational DBMS 
(http://virtuoso.openlinksw.com/)
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RDF/SPARQL (and graph database) tools

• Allegrograph
(http://www.franz.com/agraph/allegrograph/) = it is a 
native triple store providing support for SPARQL 
queries over RDF datasets. It also provide Prolog query 
APIs and offers built-in reasoner over RDFS++ (i.e., 
RDFS predicates plus some of OWL predicates, the 
W3C Web Ontology language). 

• …and many more, see
http://esw.w3.org/topic/SparqlImplementations
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RDF/SPARQL (and graph database) tools

• RDF datasets can be also stored in non-native RDF storage systems

• Graph databases (as Allegrograph) are the most suited ones: e.g., the 
most widely used graph database today, Neo4j 
(http://www.neo4j.org/), provides an RDF/SPARQL module which 
relies on a native storage of data in the form of property graph 
databases

• Other kinds of NoSQL databases can be used to store RDF triples, 
and often provide some kind of SPARQL query support (e.g, HBase, 
Couchbase, Cassandra). 

• In all these cases, however, no specific index mechanisms for RDF 
datasets are guaranteed.

• For some deepenings on the use of NoSQL databases for RDF 
storage, we refer to Cudré-Mauroux et al. NoSQL Databases for 
RDF: An Empirical Evaluation. ISWC 2013.


