
MongoDB

Daniele Pantaleone

Giacomo Ronconi

Corso di laurea magistrale in Data Science

2017/2018

MongoDB 2

Introduction to

➢ MongoDB is an opensource NO-SQL document-oriented database system.

➢ Eschew the traditional table-based relational database structure in favor of

JSON-like document format with dynamic schemas (MongoDB calls the

format BSON), making the integration of data in certain types of applications

easier and faster.

➢ It can be considered part of the Aggregate NO-SQL database system family

because it allows to operate on data in units without the necessity of

enforcing a general schema.

➢ It deals perfectly with the 3Vs describing a Big Data environment: it is

capable of storing large amount of data (volume), processing them in a fast

way (velocity) without the needs of having homogeneous data (variety).

MongoDB 3

Difference with key-value database systems

➢ MongoDB is consistent with the definition of document database system

because while not enforcing a general schema, the datatypes need to be

consistent with the ones of the BSON format. So, it is possible to highlight a

structure of the aggregate without the need of an application doing any type

of interpretation.

➢ On the contrary, in key-value database systems (like Amazon’s Dynamo

Database), the aggregate is just a BLOB of bits, and the application is the

only responsible of data interpretation.

MongoDB 4

Data Model

➢ MongoDB stores data in the form of documents. A document is a JSON-like

data structure composed of field-and-value pairs: documents are analogous

to structures in programming languages that associate keys with values

(e.g. dictionaries, hashes, maps, associative arrays, etc.)

➢ MongoDB stores document on disk in the BSON serialization format. BSON

is a binary representation of JSON documents which contains more data

types than JSON does.

Documents

A MongoDB document

{
_id: ObjectId("5099803df3f4948bd2f98391"),
name: { first: "Alan", last: "Turing" },
birth: new Date('Jun 23, 1912'),
death: new Date('Jun 07, 1954'),
contribs: ["Turing machine", "Turing test", "Turingery"],
views : NumberLong(1250000)

}

MongoDB 5

Data Model

➢ The maximum BSON document size is 16 MB. The maximum document

size helps ensure that a single document cannot use excessive amount or

RAM or, during transmission, excessive amount of bandwidth.

➢ Documents in MongoDB have the following restrictions on field names:

➢ The field name _id is reserved for use as primary key: it’s value must be unique in

the collection and may be of any type other than an array

➢ The field names cannot start with the $ character

➢ The field names cannot contain the . character

➢ Every document in MongoDB has attached a primary key: if the client sends
a document without and _id field, MongoDB will add the _id field and

generate the ObjectId.

Documents

MongoDB 6

Data Model

➢ MongoDB stores all documents in collections. A collection is the equivalent

of an RDBMS table and it exists withing a single database.

➢ MongoDB collections do not enforce a schema (unlike RDBMS): documents

within a collections can have different fields. However, typically all

documents in a collection have similar or related purpose.

Collections

MongoDB 7

Data Model

➢ MongoDB doesn’t support joins. In MongoDB some data is denormalized or

stored with related data in documents to remove the needs for joins.

However in some cases it makes sense to store related information in

separate documents, typically in different collections or databases.

➢ MongoDB applications of of two methods for relating documents:

➢ Manual references

➢ DBRefs

Database references

MongoDB 8

Data Model

➢ Manual references refers to the practice of including one document _id field

in another one: in this way the appication can issue a second query to

resolve the referenced fields as needed.

Database references – Manual references

The only limitation of manual

linking is that these

references do not convey the

database and collection

name. If there is the need of

linking documents in a

collections with documents

of other collections DBRefs

can be used.

original_id = ObjectId()

db.places.insert({
"_id": original_id,
"name": "Broadway Center",
"url": "bc.example.net"

})

db.people.insert({
"name": "Erin",
"places_id": original_id,
"url": "bc.example.net/Erin"

})

Example of manual reference

MongoDB 9

Data Model

➢ DBRefs are conventions for representing a document, rather than a specific

reference type. They include the name of the collection, and in some cases

the database, in addition to the value from the _id field.

Database references – DBRefs

{
"_id" : ObjectId("5126bbf64aed4daf9e2ab771"),
"creator" : {

"$ref" : "creators",
"$id" : ObjectId("5126bc054aed4daf9e2ab772"),
"$db" : "users"

}
}

{ "$ref" : <value>, "$id" : <value>, "$db" : <value> }

DBRef document format

Example of DBRef document which points to a document in the creators collection of

the users database that has ObjectId("5126bc054aed4daf9e2ab772") in its _id field

10

Data Model

➢ GridFS is a specification for storing and retrieving files that exceed the

BSON document size limit of 16 MB.

➢ Instead of storing a file in a single document, GridFS divides a file into parts,

or chunks, and stores each of those chunks as a separate document (by

default GridFS limits chunk size to 256 KB).

➢ GridFS store files in two collections: chunks to store the binary chunks, and

files to store the file’s metadata. Those collections are stored in a common

bucket by prefixing them with the same bucket name: by default GridFS

stores files in two collections with names prefixed by fs bucket.

➢ When you query a GridFS store for a file, the driver or client will reassemble

the chunks as needed. Is it possible to access information from arbitrary

sections of files, which allows you to skip into the middle of a video or an

audio file.

GridFS

MongoDB

MongoDB 11

Data Model

➢ Each document in the chunks collection represent a distinct chunk of a file

as represented in the GridFS store.

GridFS – The chunks collection

{
"_id" : <ObjectId>,
"files_id" : <ObjectId>,
"n" : <num>,
"data" : <binary>

}

Prototype document from the chunks collection

Field Description

_id The unique ObjectId of the chunk

files_id The _id of the parent document as specified in the files collection

n The sequence number of the chunk (index start from 0)

data The chunk’s payload as BSON bynary type

MongoDB 12

Data Model

➢ Each document in the files collection represents a file in the GridFS store.

➢ Documents in the files collection contain some or all of the following fields.

Applications may create additional arbitrary fields.

GridFS – The files collection

{
"_id" : <ObjectId>,
"length" : <num>,
"chunkSize" : <num>
"uploadDate" : <timestamp>
"md5" : <hash>

"filename" : <string>,
"contentType" : <string>,
"aliases" : <string array>,
"metadata" : <dataObject>,

}

Prototype document from the files collection

MongoDB 13

Data Model
GridFS – The files collection

Field Description

_id
The unique ID for this document. The _id is of the data type you chose

for the original document. The default is BSON ObjectId.

length The size of the document in bytes.

chunkSize
The size of each chunk. GridFS divides the document into chunks of the

size specified here. The default size is 256 KB.

uploadDate
The date the document was first stored by GridFS. This value uses the

Date datatype.

md5 An md5 has returned by the file md5 API. The value has a String type.

filename Optional. A human-readable name for the document.

contentType Optional. A valid MIME type for the document.

aliases An array of alias strings.

metadata Optional. Any additional information you want to store.

MongoDB 14

Data Model

➢ The ObjectId is a 12-byte BSON type, constructed using:

➢ a 4-byte value representing the seconds since the Unix Epoch

➢ a 3-byte machine identifier

➢ a 2-bye process id

➢ a 3-byte counter, starting with random value

➢ In MongoDB documents stored in a collection require a unique _id
field that acts as primary key. Since ObjectIds are small most likely

unique, and fast to generate, MongoDB uses them as default value

for the _id field if such field is not specified.

ObjectId

MongoDB 15

Data Model

➢ The following table presents the various SQL terminology and concepts and

the corresponding MongoDB terminology and concepts:

SQL to MongoDB mapping chart

SQL Term/Concept MongoDB Term/Concept

database database

table collection

row document

column field

index index

table joins embedded documents and linking

primary key primary key

aggregation (e.g. group by) aggregation pipeline

MongoDB 16

CRUD Operations

➢ In MongoDB, the db.collection.insert() method adds new documents into a

collection. In addition, both db.collection.update() and db.collection.save()
methods can also add new documents through an operation called upsert.

The upsert is an operation which performs either an update of an existing

document or an insert of a new document if the document to modify does

not exists.

➢ The db.collection.insert() method has the following behavior:

➢ If the collection doesn’t exists, the insert() method will create the collection.

➢ If the document doesn’t specify an _id field, then MongoDB will add the _id field

and assign a unique ObjectId for the document before inserting.

➢ If the document specifies a new field then the insert() method inserts the document

with the new field. This requires no changes to the Data Model for the collection or

the existing document.

Insert documents

db.collection.insert(<document>)

Document insert function prototype

MongoDB 17

CRUD Operations

➢ The db.collection.update() method modifies an existing document or

documents in a collection. The method can modify specific fields of an

existing document or documents, or replace an existing document entirely,

depending on the update parameter.

➢ By default the update() method updates a single document. If the multi

option is set to true, the method updates all the documents matching the

query criteria.

➢ If the upsert parameter is set to true, the update() method creates a new

document when no document matches the query criteria.

Update documents

db.collection.update(
<query>,
<update>,
{ upsert: <boolean>, multi: <boolean> }

)

Document update function prototype

MongoDB 18

CRUD Operations

➢ If the <update> document contains update operator expressions, such those

using the $set operator, then:

➢ The <update> document must contain only update operator expressions

➢ The update() methodupdates only the corresponding fields in the document

➢ If the <update> document contains only field:value expressions, then:

➢ The update() method replaces the matching document with the <update> one

➢ The update() method cannot update multiple documents

Update documents

db.books.update(
{ item: "Divine Comedy" },
{ $set: { price: 18 }, $inc: { stock: 5 } }

)

Example of document update: this will update a document in the books collection

changing the price field to 18 and incrementing the stock field by 5 units

MongoDB 19

CRUD Operations

➢ The db.collection.save() method updates an existing document or inserts a

new document, depending on it’s document parameter.

➢ If the document doesn’t contain an _id field, then the save() method performs

an insert(). During the operation, the ObjectId is generated and assigned to

the _id field.

➢ If the document contains an _id field then the save performs an upsert,

querying the collection on the _id field. If a document doesn’t exist with the

specified _id value, then the save() method performs an insert(). If a

document exists with the specified _id value, then the save() method performs

an update() that replaces all the fields in the existing document with the fields

from the given one.

Save documents

db.collection.save(<document>)

Document save function prototype

MongoDB 20

CRUD Operations

➢ The db.collection.remove() method, removes documents from a collection. Is

it possible to remove all documents from a collection, removes documents

matching a given condition, or limit the operation to remove just a single

document.

➢ If the remove() method is invoked without specifying query parameters, all the

documents of the collection will be removed (it doesn’t remove the indexes).

If this is the case, it may be more efficient to use the db.collection.drop()
method, which drops the entire collection, including indexes and then

recreate the collection and rebuild the indexes.

Remove documents

db.inventory.remove({type: ”food”})

Document remove function which removes all documents from the

inventory collection where the type field equals food

db.collection.remove(<query>, justOne: <boolean>)

Document remove function prototype

MongoDB 21

CRUD Operations

➢ The db.collection.find() method retrieves documents from a collection: it

returns a cursor which can be used to iterate over the retrieved documents.

➢ The method specifies two optional parameters:

➢ criteria: a document which specifies selection criteria using Query Operators. To

return all documents within a collection, omit this parameter or pass an empty

document.

➢ projection: a document which specifies the fields to return using Projection

Operators. To return all fields in the matching document, omit this parameter. The
projection document format is of the type { <field> : <boolean>, … } where the

boolean value indicates whether to return or not the specified field.

Query documents

db.collection.find(<criteria>, <projection>)

Document find function prototype

MongoDB 22

CRUD Operations
Query documents

db.products.find()

Example of find function usage which retrieves all the documents within a collection

db.products.find({ qty: { $gt: 25 } })

Example of find function which retrieves all the documents in the products

collection whose qty field value is greater than 25

db.products.find({ qty: { $gt: 25 } }, { item: 1, qty: 1})

Example of find function which retrieves all the documents in the products collection whose

qty field value is greater than 25: only the _id, item and qty fields will be returned

db.products.find({ qty: { $gt: 25 } }, { _id: 0, qty: 0 })

Example of find function which retrieves all the documents in the products collection whose

qty field value is greater than 25: The _id and qty fields will be excluded from the result set

MongoDB 23

Aggregation

➢ Aggregations are operations that process data records and return computed

results. MongoDB provides a rich set of aggregation operations that examine

and perform calculations on the data sets.

➢ Like queries, aggregation operations in MongoDB use collection of

documents as input, and return results in the form of one or more

documents.

➢ MongoDB provides two Aggregation Modalities:

➢ Aggregation Pipeline

➢ Map Reduce

Introduction

MongoDB 24

Aggregation

➢ The aggregation pipeline is a new framework for data aggregation modeled

on the concept of data processing pipelines. Documents enter a multi-stage

pipeline that transforms the documents into an aggregated results.

➢ The aggregation pipeline provides an alternative to map-reduce and may be

the preferred solution for many aggregation tasks where the complexity of

map-reduce may be unwarranted.

➢ There are two main phases in order to do the aggregation:

Aggregation Pipeline

db.orders.aggregate([
{ $match: { status: "A"}},
{ $group: { _id: "$cust_id", total: { $sum: "$amount"}}}

])

Example of aggregate function which retrieves all the documents in the orders collection whose

status field value is equal to A; the selected documents are then grouped by _id and total is

computedsumming all the amount fields of the documents having the same _id

MongoDB 25

Aggregation
Aggregation Pipeline

MongoDB 26

Aggregation

➢ The aggregation pipeline starts processing the documents of the collection and

pass the result to the next Pipeline Operator in order to get the final result.

➢ The operators can filter out documents (e.g. $match) generate new

documents (e.g. $group) computing the result from the given ones.

➢ The same operator can be used more than once in the pipeline.

➢ Each operator takes as input a pipeline expression that is a document itself

containing:

➢ Fields

➢ Values

➢ Operators

➢ The aggregate command operates on a single collection.

➢ Hint: use match operator at the beginning of the pipeline.

Aggregation Pipeline

MongoDB 27

Aggregation

➢ Map-Reduce is a paradigm to manage big data in aggregated results.

➢ Supported by MongoDB with the command mapReduce

➢ mapReduce need two functions and an object:

➢ A function for the map phase: emit (key,value) pairs

➢ A function for the reduce phase: apllied for keys with multiple values

➢ And an object for the query and the output

➢ Map-Reduce is implemented through javascript calls

Map-Reduce

db.orders.mapReduce(
function() { emit(this.cust_id, this.amount); },
function(key, values) { return Array.sum(values); },
{

query: { status: "A"},
out: "order_totals"

}
)

MongoDB 28

Aggregation

➢ MongoDB provides a set of specific operations for aggregation:

➢ count: return the number of document that match a query

➢ distinct: takes a number of documents that match a query and returns all of the

unique values for a field in the matching documents.

➢ group: takes a number of documents that match a query, and then collects groups

of documents based on the value of a field or fields. It returns an array of

documents with computed results for each group of documents.

Single Purpose Aggregation Operations

MongoDB 29

Indexes

➢ Indexes are used by MongoDB to answer more efficiently queries.

➢ Without indexes MongoDB have to scan the whole collection.

➢ The idea is very similar to indexes in RDB: indexes are B-trees at the

collection level.

Introduction

MongoDB 30

Indexes

➢ Default _id:

➢ All MongoDB collections have an index on the _id field that exists by default. If

applications do not specify a value for _id MongoDB will create an _id field with an

ObjectId value.

➢ The _id index is unique, and prevents clients from inserting two documents with the

same value for the _id field.

➢ Single Field:

➢ User defined index on a single field of a document.

➢ Compound Index:

➢ User defined index on multiple fields.

Indexes Types

MongoDB 31

Indexes

➢ Multikey Index:

➢ Used to index the content stored in an array. Allow you to make queries matching

the elements of an array.

➢ Geospatial Index:

➢ Support queries of geospatial coordinate data.

➢ Text Indexes:

➢ Support queries of string skipping language specific stop-words.

➢ Hashed Indexes:

➢ Index the hash of the value of a field to increase randomity of distribution.

Indexes Types

