
Data Management for Data Science

Sapienza Università di Roma

2017/2018

SQL

Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Ingegneria informatica, automatica

e gestionale Antonio Ruberti

Sapienza Università di Roma

SQL - 2

SQL

1. Data definition

1. Data definition

2. Data manipulation

3. Queries

4. Further aspects

SQL - 3

SQL

• SQL ("Structured Query Language") contains both the DDL (Data
Definition Language) and the DML (Data Manipulation Language)

• Different versions of the language exist

• Brief history:

– First proposal: SEQUEL (IBM Research, 1974);

– first implementations in SQL/DS (IBM) and Oracle (1981);

– from 1983 ca., “standard de facto”

– standard versions released in 1986, 1989, 1992, 1999, 2003

– Last versions only partially supported by commercial systems

SQL - 4

Using an SQL-based DBMS

• An SQL-based database management system (DBMS) is a

server that allows for managing a set of relational databases

• Following the relational model, an SQL database is

characterized by a schema (intensional level) and by an

instance (extensional level)

• In addition, an SQL database is characterized by a set of

meta-data (catalog)

SQL - 5

Data definition in SQL

• The most important statement of the SQL DDL is

create table

– Defines a relation schema (specifying attributes and

constraints)

– Creates an empty instance of the relation schema

• Syntax: create table TableName (

AttributeName Domain [Constraints]

........

AttributeName Domain [Constraints]

[OtherConstraints]

)

SQL - 6

create table: example

create table Employee (

ID character(6) primary key,

Name character(20) not null,

Surname character(20) not null,

Depart character(15),

Salary numeric(9) default 0,

City character(15),

foreign key(Depart) references

Department(DepName),

unique (Surname,Name)

)

table

name

attribute
name

constraint

domain
(type)

SQL - 7

SQL and the relational model

• Remark: an SQL table is defined as a multiset of n-
tuples

• Only if the table has a primary key (or a set of attributes
defined as unique), the same n-tuple cannot appear
twice in the table

SQL - 8

Domains for attributes

• Predefined domains
– Character:

• char(n) or character(n)
• varchar(n) (or char varying(n))
• nchar(n) and nvarchar(n) (or nchar varying(n)) (UNICODE)

– Numeric:
• int or integer, smallint

• numeric, (or numeric(p), numeric(p,s))
• decimal, (or decimal(p), decimal(p,s))
• float, float(p), real , double precision

– Date, time:
• Date, time, timestamp

• time with timezone, timestamp with timezone

– Bit:
• bit(n)

• bit varying(n)

– Further domanis (introduced in SQL:1999)
• boolean

• BLOB, CLOB, NCLOB (binary/character large object)

SQL - 9

Domains for attributes

• User-defined domains
– Sintassi

create domain NewDomainName
as PreExistingDomain [Default] [Constraints]

– Example:
create domain Grade
as smallint default null
check (value >=18 and value <= 30)

SQL - 10

Intra-relational constraints

• not null (over single attributes)

• unique: defines a set of attributes as a super-key:

– single attribute:

unique after the domain specification

– Multiple attributes:

unique (Attribute,...,Attribute)

• primary key: (only one primary key can be defined on a
relation) syntax similar to unique; implies not null

• check, for more complex constraints

SQL - 11

Example

create table Employee (

ID character(6) primary key,

Name character(20) not null,

Surname character(20) not null,

Depart character(15),

Salary numeric(9) default 0,

City character(15),

foreign key(Depart)references

Department(DepName),

unique (Surname,Name)

)

SQL - 12

primary key, alternative

create table Employee (
ID character(6) primary key,
...

)

oppure

create table Employee (
ID character(6),
...
primary key (ID)

)

SQL - 13

Keys over multiple attributes

create table Employee (...
Name character(20) not null,
Surname character(20) not null,
unique (surname,name)

)

is different from:

create table Employee (...
Name character(20) not null unique,
Surname character(20) not null unique

)

SQL - 14

Inter-relational constraints

• check, for complex constraints

• references and foreign key allow for defining referential integrity

constraints

Syntax:

– single attribute:

references after the specification of the domain

– multiple attributes:

foreign key(Attribute,...,Attribute)references ...

The attributes referenced in the end table must constitute a key (primay

key or unique). If they are missing, the attributes of the primary key are

considered.

Semantics: every combination (without NULL) of values for the attributes

in the starting table must appear in the end table

SQL - 15

Inter-relational constraints: example

ID

3987

3295

9345

Policemen Surname

Rossi

Neri

Neri

Name

Luca

Piero

Mario

Mori Gino7543

Infringements

Code

34321

73321

64521

53524

Date

1/2/95

4/3/95

5/4/96

5/2/98

Policeman

3987

3295

3295

9345

Prov Number

MI

TO

PR

PR

39548K

E39548

839548

839548

SQL - 16

Inter-relational constraints: example (cont.)

Infringements

Code

34321

73321

64521

53524

Date

1/2/95

4/3/95

5/4/96

5/2/98

Policeman

3987

3295

3295

9345

Prov Number

MI

TO

PR

PR

39548K

E39548

839548

839548

Car Prov Number

MI

TO

PR

39548K

E39548

839548

Surname

Rossi

Rossi

Neri

Name

Mario

Mario

Luca

SQL - 17

Inter-relational constraints: example

create table Infringements (

Code character(6) not null primary key,

Date date not null,

Policeman integer not null

references Policemen(ID),

Prov character(2),

Number character(6),

foreign key(Prov, Number)

references Car(Prov,Number)

)

SQL - 18

Schema modification : alter table

alter table: allows for modifying a table

Example:

create table Infringements (
Code character(6) not null primary key,
Date date not null,
Policeman integer not null

references Policemen(ID),
Prov character(2),
Number character(6),

)

alter table Infringements
add constraint MyConstraint foreign key(Prov, Number)
references Car(Prov, Number)

It can be used to realize cyclic referential integrity constraints

SQL - 19

Schema modification: drop table

drop table: eliminates a table

Syntax:

drop table TableName restrict | cascade

Esempio:

drop table Infringements restrict or simply
drop table Infringements

– eliminates the table if it is not referenced

drop table Infringements cascade – eliminates the table

and all the tables (and the other database objects) referring to it

SQL - 20

Definition of indices

• Is very important for the system performance

• Deals with the physical level of the DB, not the logical one

• create index

• Syntax (simplified):

create [unique] index IndexName on

TableName Attribute,...,Attribute)

• Example:

create index IndiceIP on

Infringements(Prov)

SQL - 21

Catalog (or data dictionary)

Every DBMS creates and maintains special tables that

collect the meta-data about

• tables

• attributes

• ...

For instance, the Columns table contains the attributes

• Column_Name

• Table_name

• Ordinal_Position

• Column_Default

• …

SQL - 22

SQL

2. Data manipulation

1. Data definition

2. Data manipulation

3. Queries

4. Further aspects

SQL - 23

Update operations in SQL

• Update operations:

– addition: insert

– elimination: delete

– modification: update

• Of one or multiple tuples of a relation

• Based on a condition that may involve the relation

and/or other relations

SQL - 24

Insert: syntax

insert into Table [(Attributes)]

values(Values)

or

insert into Table [(Attributes)]

select ...

SQL - 25

insert into person values('Mario',25,52)

insert into person(name, age, income)

values('Pino',25,52)

insert into person(name, income)

values('Lino',55)

insert into person (name)

select father

from isFather

where father not in (select name from person)

Insert: example

SQL - 26

Insert: comments

• The order ot the attributes and the values (if present) is
significant

• The list of attributes and the list of values must have the
same number of elements

• If the attribute list is missing, all the attributes of the
relation are considered, according to the order in which
they have been defined

• If the attribute list does not contain all the attributes of the
relation, a null value is inserted for every missing attribute
(or a default value, if declared)

Syntax:

delete from Table [where Condition]

Example:

delete from person

where age < 35

delete from isFather

where child not in

(select name from person)

SQL - 27

Tuple elimination

SQL - 28

Delete: comments

• Deletes the tuples satisfying the condition

• It may cause (if the referential integrity constraints are

defined using cascade) deletions in other relations

• remember: if the where clause is omitted, it is considered

as where true

SQL - 29

Tuple modification

• Syntax:

update TableName

set Attribute = < Expression | select … | null | default >

[where Condition]

• Semantics: the tuples that satisfy the «where» condition are deleted

• Examples:

update person set income = 45
where name = 'Piero'

update person set income = income * 1.1
where age < 30

SQL - 30

SQL

3. Queries

1. Data definition

2. Data manipulation

3. Queries

4. Further aspects

SQL - 31

The select statement (basic version)

• The query statement in SQL is

select

• It defines a query and returns the result as a table

select Attribute … Attribute
from Table … Table
[where Condition]

• The three sections of the statement are usually called:

– target list

– from clause

– where clause

SQL - 32

name age

person

income
Andrea 27

Maria 55

Anna 50

Filippo 26

Luigi 50

Franco 60

Olga 30
Sergio 85

Luisa 75

Aldo 25

21

42

35

30

40

20

41
35

87

15

motherisMother child
Luisa

Anna
Anna
Maria
Maria

Luisa
Maria

Olga
Filippo
Andrea

Aldo

Luigi

fatherisFather child

Luigi
Luigi

Franco
Franco

Sergio
Olga

Filippo
Andrea

Aldo

Franco

SQL - 33

Selection and projection

Name and income of pepole who are less than 30 years old:

PROJname, income(SELage<30(person))

select person.name, person.income

from person

where person.age < 30

name income
Andrea

Aldo

21

15

Filippo 30

SQL - 34

Name conventions

• To avoid ambiguity, every attribute name is composed of

TableName.AttributeName

• When there is no ambiguity, TableName can be omitted

select person.name, person.income
from person
where person.age < 30

can be written as follows:

select name, income
from person
where age < 30

SQL - 35

SELECT, abbreviations

can be also written as:

select p.name as name, p.income as income

from person as p

where p.age < 30

select person.name, person.income
from person
where person.age < 30

or:

select p.name as name, p.income as income

from person p

where p.age < 30

SQL - 36

Projection

surname and city of all employees

PROJ surname, city (employees)

surname city salaryID

Neri Milano 645998

Neri Napoli 557309

Rossi Roma 645698

Rossi Roma 449553

employees

SQL - 37

surname city

Neri Milano

Neri Napoli

Rossi Roma

surname city

Neri Milano

Neri Napoli

Rossi Roma

Rossi Roma

select surname,

city

from employees

select distinct surname,

city

from employees

Projection and duplicates

SQL - 38

SELECT, usage of “as”

“as” is used in the attribute list to specify a name for an attribute of the
result. If such a name is not specified, then the attribute name of the
result is equal to the corresponding attribute of the input table.

Example:

select name as personName, income as salary

from person

where age < 30

returns a relation with two attributes: personName and salary

select name, income

from person

where age < 30

returns a relation with two attributes: name and income

SQL - 39

Exercise 1

Compute the table obtained from table person

selecting only the people whose income is between 20

and 30, and adding an attribute that has the same value
as the attribute income in every tuple

Show the result of the query over the table person

shown at page 32.

name ageperson income

SQL - 40

Solution, Exercise 1

select name, age, income,
income as repeatedIncome

from person
where income >= 20 and income <= 30

name age income
Andrea 27
Filippo 26
Franco 60

21
30
20

repeatedIncome
21
30
20

SQL - 41

Selection, without projection

name, age and income of people who are less than 30
years old

SELage<30(person)

select *
from person
where age < 30

Is an abbreviation for:

select name,age,income

from person

where age < 30

all attributes

SQL - 42

Projection, without selection

name and income of all people:

PROJname, income(person)

select name, income
from person

Is an abbreviation for:

select p.name, p.income

from person p

where true

SQL - 43

Expressions in the target list

select income/2 as semesterIncome

from person

where name = 'Luigi'

Complex condition in the “where” clause:

select *

from person

where income > 25

and (age < 30 or age > 60)

SQL - 44

“LIKE” condition

People having a name whose first letter is 'A’, and
whose third letter is 'd‘:

select *

from person

where name like 'A_d%'

SQL - 45

SEL age > 40 OR age IS NULL (employees)

Null values

Employees whose age is or might be greater than
40:

select *

from employees

where age > 40 or age is null

SQL - 46

Exercise 2

Compute the tble obtained from table employees
selecting only the ones whose city is Roma or
Milano, projecting the data on the attribute salary,
and adding an attribute having, in every tuple, a
value that is the double the value of the attribute
salary

Show the result of the query over the table shown at
page 36.

surname city salaryIDemployees

SQL - 47

Solution, Exercise 2

select salary,

salary*2 as doubleSalary

from employees

where city = 'Milano' or

city = 'Roma'

salary

64

44

64

doubleSalary

128

88

128

SQL - 48

Selection, projection and join

• the select statements with a single relation in the
from clause allow for expressing:

– selections

– projections

– renamings

• joins (and cartesian products) are expressed
using two or more relations in the from clause

SQL - 49

SQL and relational algebra

Given the relations R1(A1,A2) and R2(A3,A4):

The semantics of the query

select R1.A1, R2.A4
from R1, R2
where R1.A2 = R2.A3

can be described as a combination of:
– cartesian product (from)
– selection (where)
– projection (select)

Remark: this does not mean that the DBMS necessarily
computes the cartesian product to answer the query!

SQL - 50

SQL: DBMS execution of queries

• SQL expressions are declarative, and we are describing

their semantics

• In pratice, DBMSs execute operations in efficient ways,

for instance:

– They execute selections as soon as possible

– If possible, they execute joins instead of cartesian

product

• The ability of DBMSs to optimize queries makes it

usually not necessary to deal with efficiency when a

query is specified

SQL - 51

SQL and relational algebra, 2

Given the relations R1(A1,A2) and R2(A3,A4)

select R1.A1, R2.A4

from R1, R2

where R1.A2 = R2.A3

corresponds to:

PROJ A1,A4 (SELA2=A3 (R1 JOIN R2))

SQL - 52

Renamings may be necessary:

• in the target list
• In the from clause (cartesian product), in particular

when the same table must be referred multiple times

select X.A1 as B1, ...
from R1 X, R2 Y, R1 Z
where X.A2 = Y.A3 and ...

can be written as

select X.A1 as B1, ...
from R1 as X, R2 as Y, R1 as Z
where X.A2 = Y.A3 and ...

SQL and relational algebra, 3

SQL - 53

REN B1,B2←A1,A4 (

PROJ A1,A4 (SEL A2 = A3 and A4 = C1(

R1 JOIN R2 JOIN REN C1,C2 ← A1,A2 (R1))))

select X.A1 as B1, Y.A4 as B2

from R1 X, R2 Y, R1 Z

where X.A2 = Y.A3 and Y.A4 = Z.A1

SQL and relational algebra: example

SQL - 54

name age

person

income

Andrea 27

Maria 55

Anna 50

Filippo 26

Luigi 50

Franco 60

Olga 30

Sergio 85

Luisa 75

Aldo 25

21

42

35

30

40

20

41

35

87

15

motherisMother child

Luisa

Anna

Anna

Maria

Maria

Luisa

Maria

Olga

Filippo

Andrea

Aldo

Luigi

fatherIs Father child

Luigi

Luigi

Franco

Franco

Sergio

Olga

Filippo

Andrea

Aldo

Franco

SQL - 55

Exercise 3: selection, projection and join

Return the fathers of people who earn more than 20

millions.

SQL - 56

Exercise 3: solution

Return the fathers of people who earn more than 20

millions.

PROJfather(isFather JOIN child=name SELincome>20 (person))

select distinct isFather.father

from person, isFather

where isFather.child = person.name

and person.income > 20

SQL - 57

Exercise 4: join

Return the father and the mother of every person.

SQL - 58

Exercise 4: solution

Return the father and the mother of every person.

This can be expressed in relational algebra through the

natural join.

isFather JOIN isMother

In SQL:

select isMother.child, father, mother

from isMother, isFather

where isFather.child = isMother.child

SQL - 59

Exercise 4: solution

If we interpret the question as: return father and mother of

every person appearing in the «person» table, then we

need an additional join:

In relational algebra:

PROJchild,father,mother ((isMother JOIN isFather)

JOINchild=name person)

In SQL:
select isMother.child, father, mother

from isMother, isFather, person

where isFather.child = isMother.child

and isMother.child = person.name

SQL - 60

Exercise 5: join and other operations

Return the persons earning more than their fathers,

showing name, income and father’s income.

SQL - 61

Return the persons earning more than their fathers, showing name,

income and father’s income.

PROJname, income, RP (SELincome>RP

(RENNP,EP,RP  name,age,income(person)
JOINNP=father

(isFather JOIN child =name person)))

select c.name, c.income, p.income

from person p, isFather t, person c

where p.name = t.father and

t.child = c.name and

c.income > p.income

Exercise 5: solution

SQL - 62

SELECT, with renaming of the result

Return the persons earning more than their fathers, showing
name, income and father’s income.

select child, c.income as income,

p.income as fatherIncome

from person p, isFather t, person c

where p.name = t.father and

t.child = c.name and

c.income > p.income

SQL - 63

SELECT with explicit join

select …

from Table { join Table on JoinCondition }, …

[where OtherCondition]

this is the SQL operator corrisponding to theta-join

SQL - 64

Explicit join

Return the father and the mother of every person:

select isFather.child, father, mother

from isMother, isFather

where isFather.child = isMother.child

select mother, isFather.child, father

from isMother join isFather on

isFather.child = isMother.child

explicit
join

SQL - 65

Exercise 6: explicit join

Return the persons earning more than their fathers,
showing name, income and father’s income.

Express the query using the explicit join.

SQL - 66

Return the persons earning more than their fathers, showing
name, income and father’s income.

select c.name, c.income, p.income

from person p, isFather t, person c

where p.name = t.father and

t.child = c.name and

c.income > p.income

Using the explicit join:

select c.name, c.income, p.income

from person p join isFather t on p.name=t.father

join person c on t.child=c.name

where c.income > p.income

SELECT with explicit join: example

SQL - 67

Natural join (less frequently used)

PROJchild,father,mother(isFather JOIN childname REN namechild(isMother))

In algebra: isFather JOIN isMother

In SQL (with select isFather.child, father, mother

Explicit join): from isMother join isFather on

isFather.child = isMother.child

In SQL (with select isFather.child, father, mother

natural join) : from isMother natural join isFather

SQL - 68

Left outer join

Return every pair child/father and, if known, the mother.

select isFather.child, father, mother

from isFather left outer join isMother

on isFather.child = isMother.child

(if the mother does not exist, a null value is returned)

Remark: “outer” is optional

select isFather.child, father, mother

from isFather left join isMother

on isFather.child = isMother.child

SQL - 69

Right outer join

if we use the right outer join:

select isFather.child, father, mother

from isFather right outer join isMother

on isFather.child = isMother.child

the query returns all mothers (even those who do not have a

join with isFather)

SQL - 70

Left and right outer join: examples

select isFather.child, father, mother
from isMother join isFather

on isMother.child = isFather.child

select isFather.child, father, mother
from isMother left outer join isFather

on isMother.child = isFather.child

select isFather.child, father, mother
from isMother right outer join isFather

on isMother.child = isFather.child

SQL - 71

Full outer join: examples

select isFather.child, father, mother
from isMother full outer join isFather

on isMother.child = isFather.child

select name, father, mother
from person full outer join isMother on

person.name = isMother.child
full outer join isFather on
person.name = isFather.child

SQL - 72

Ordering the result: order by

name and income of persons whose age is less than 30

in alphabetical order

select name, income

from person

where age < 30

order by name

select name, income

from person

where age < 30

order by name desc

descending

order

ascending

order

SQL - 73

name income

Andrea 21

Aldo 15

Filippo 30

name income

Andrea 21

Aldo 15

Filippo 30

select name, income

from person

where age < 30

select name, income

from person

where age < 30

order by name

Ordering the result: order by

SQL - 74

Bounding the size of the query result

select name, income

from person

where age < 30

order by name

limit 2

SQL - 75

name income

Andrea 21

Aldo 15

select name, income

from person

where age < 30

order by name

limit 2

Bounding the size of the query result

SQL - 76

Aggregate operators

The target list may contain expressions that compute values

based on sets of tuples:

– count, min, max, average, total

(simplified) syntax:

Function ([distinct] ExpressionOverAttributes)

SQL - 77

Aggregate operators: count

Syntax:

• Count the number of tuples:

count (*)

• Count the values in an attribute:

count (Attributo)

• Count the distinct values in an attribute:

count (distinct Attributo)

SQL - 78

count: example and semantics

Esempio: Return the number of children of Franco:

select count(*) as NumChildrenFranco

from isFather

where father = 'Franco'

Semantics: the aggregate operator (count) is applied to

the result of the following query:

select *

from isFather

where father = 'Franco'

SQL - 79

fatherisFather child

Luigi

Luigi

Sergio

Olga

Filippo

Franco

Franco

Andrea

Aldo

Franco

Franco

Franco

Andrea

Aldo

NumChildrenFranco

2

count: example

SQL - 80

count and null values

select count(*)

from person

select count(income)

from person

select count(distinct income)

from person

name ageperson income

Andrea 27

Maria 55

Anna 50

Aldo 25

21

21

35

NULL

Result = 4

Result = 3

Result = 2

SQL - 81

Other aggregate operators

sum, avg, max, min

• Allow an attribute or an expression as argument (not “*”)

• sum and avg: numeric or date/time arguments

• max and min: arguments on which a total ordering is
defined

Esempio: return the income average of Franco’s children:

select avg(income)
from person join isFather on

name = child
where father = 'Franco'

SQL - 82

Aggregate operators and null values

select avg(income) as averageIncome

from person

name ageperson income

Andrea 27

Maria 55

Anna 50

Aldo 25

30

36

36

NULL

this tuple is

ignored

averageIncome

34

SQL - 83

Aggregate operators and target list

The following query does not make sense:

select name, max(income)

from person

For the query to make sense, the target list must be

homogeneous, for instance:

select min(age), avg(income)

from person

SQL - 84

• In the previous cases, the aggregate operators
were applied to all the tuples constituting the
query result

• In many cases, we want the aggregate functions
to be applied to partitions of tuples

• To specify such partitions, the clause group by
can be used:

group by AttributeList

Aggregate operators and grouping

SQL - 85

Return the number of children of every father:

select father, count(*) as NumChildren

from isFather

group by father

Aggregate operators and grouping

fatherisFather child

Luigi

Luigi

Sergio

Olga

Filippo

Franco

Franco

Andrea

Aldo

Franco
father NumChildren

Luigi

Sergio

2

Franco 2

1

SQL - 86

Semantics of queries with aggregate
operators and grouping

1. execute the query ignoring the group by clause and

the aggregate operators:

select *

from isFather

2. group the tuples having the same values for the

attributes mentioned in the group by clause

3. the aggregate operator is applied to every group and a

tuple is produced for every group

SQL - 87

Exercise 7: group by

Return the maximum income (and the age) of
every group of persons whose age is greater than
18 and have the same age.

name ageperson income

SQL - 88

Exercise 7: solution

Return the maximum income (and the age) of
every group of persons whose age is greater than
18 and have the same age.

select age, max(income)

from person

where age > 18

group by age

SQL - 89

Grouping and target list

In query that uses the group by clause, the taget list should be
«homogeneous», namely, only attributes appearing in the group
by clause and aggregation functions should appear in the list.

Example:

• Income of persons, grouped by age (non-homogeneous target
list):

select age, income
from person
group by age

• Average income of persons, grouped by age (homogeneous,
target list (in every group there is only one average income):

select age, avg(income)
from person
group by age

SQL - 90

Non-homogeneous target list

What happens if the target list is non-homogeneous?

Some systems do not raise any error and for each group return
one of the values associated with the group.

Example:

Income of persons, grouped by age:

select age, income

from person

group by age

The DBMS MySQL, for instance, does not raise any error: for each
group, it chooses one of the incomes appearing in the group and
returns such a value as the income attribute of the target list.

SQL - 91

Conditions on groups

We can also impose selection conditions on groups. Group

selection is obviously different from the condition that

selects the tuples forming the groups (where clause).

Group selection is realized by the having clause, which must

appear after the “group by” clause.

Example: return the fathers whose children have an average
income greater than 25.

select father, avg(c.income)
from person c join isFather

on child = name
group by father
having avg(c.income) > 25

SQL - 92

Exercise 8: where or having?

Return the fathers whose children under 30 have an
average income greater than 20.

SQL - 93

Exercise 8: solution

Return the fathers whose children under 30 have an
average income greater than 20.

select father, avg(c.income)

from person c join isFather

on child = name

where c.age < 30

group by father

having avg(c.income) > 20

SQL - 94

Syntax of select statement (summary)

SelectSQL ::=

select AttributeOrExpressionList

from TableList

[where SimpleConditions]

[group by GroupingAttributeList]

[having AggregationConditions]

[order by OrderingAttributeList]

[limit Number]

SQL - 95

Union, intersection and difference

A single select statement does not allow for expressing

unions (for instance, the union of two tables)

An explicit statement is needed:

select ...

union [all]

select ...

With union, duplicate tuples are eliminated

With union all, duplicate tuples are kept

SQL - 96

Positional notation

select father, child
from isFather
union
select mother, child
from isMother

Which are the attributes of the result? It depends
on the system:

– new names established by the system

– the names of the first select statement

– …

SQL - 97

Luisa

Anna

Anna

Maria

Maria

Luisa

Maria

Olga

Filippo

Andrea

Aldo

Luigi

father child

Luigi

Luigi

Franco

Franco

Sergio

Olga

Filippo

Andrea

Aldo

Franco

Union: result

SQL - 98

Positional notation: example

select father, child

from isFather

union

select mother, child

from isMother

select father, child

from isFather

union

select child, mother

from isMother

These queries are different!

SQL - 99

Positional notation

With renaming (same as before):

select father as parent, child

from isFather

union

select child, mother as parent

from isMother

If we want to return fathers and mothers as parents, this is the correct

query:

select father as parent, child

from isFather

union

select mother as parent, child

from isMother

SQL - 100

Difference

select name
from employee
except
select surname as name
from employee

Note: except eliminates duplicate tuples

Note: except all does not eliminate duplicate tuples

The difference can also be expressed by nested select
statements.

SQL - 101

Intersection

select name

from employee

intersect

select surname as name

from employee

is equivalent to

select distinct i.name

from employee i, employee j

where i.name = j.surname

Note: intersect eliminates duplicate tuples

Note: intersect all does not eliminate duplicate tuples

SQL - 102

Nested queries

• A nested select statement can appear as a

condition in the where clause

• In particular, the conditions allow for:

– comparing an attribute (or a sequence of
attributes) with the result of a sub-query

– existential quantification

SQL - 103

Nested queries: example

name and income of Franco’s father:

select name, income

from person, isFather

where name = father and child = 'Franco'

select name, income

from person

where name = (select father

from isFather

where child = 'Franco')

SQL - 104

The result of a nested query can be compared in the
where clause using several operators:

Nested queries: operators

• Equality and the other comparison operator: in this case,

the result of the nested query must be a single tuple

• If the result of the nested query may contain multiple

tuples, the nested query can be preceded by:

— any: returns true if the comparison is true for at least
one of the tuples in the result of the nested query

— all: returns true if the comparison is true for every
tuple in the result of the nested query

• The operator in, which is equivalent to =any

• The operator not in, which is equivalent to <>all

• The operator exists

SQL - 105

name and income of the fathers of persons earning more than 20 millions:

select distinct p.name, p.income

from person p, isFather, person c

where p.name = father and child = c.name

and c.income > 20

select name, income

from person

where name = any (select father

from isFather, person

where child = name

and income > 20)

Nested queries: example

Fathers of persons

earning more than

20 millions

SQL - 106

name and income of the fathers of persons earning more than 20 millions:

select name, income
from person
where name in (select father

from isFather, person
where child = name
and income > 20)

select name, income
from person
where name in (select father

from isFather
where child in (select name

from person
where income > 20)

)

Nested queries: example

Fathers of persons

earning more than

20 millions

Persons earning

more than 20

millions

SQL - 107

Persons whose income is greater than the income of every

person who is less than 30 years old:

select name

from person

where income > all (select income

from person

where age < 30)

Nested queries: all (example)

SQL - 108

The exists operator is used to return true if the results of the sub-query
is not empty.

Example: persons having at least a child.

select *
from person p
where exists (select *

from isFather
where father = p.name)

or
exists (select *

from isMother
where mother = p.name)

Notice that the attribute name refers to the relation in the from clause.

Nested queries: exists (example)

SQL - 109

Exercise 9: nested queries

Return name and age of mothers having at least a child

who is less than 18 years old.

SQL - 110

Exercise 9: nested queries

Return name and age of mothers having at least a child

who is less than 18 years old.

Solution 1: a join to select name and age of mothers, and

a sub-query for the condition on the children

Solution 2: two sub-queries and no join

SQL - 111

Exercise 9: solution 1

Return name and age of mothers having at least a child

who is less than 18 years old.

select name, age

from person, isMother

where name = mother and

child in (select name

from person

where age < 18)

SQL - 112

Exercise 9: solution 2

Return name and age of mothers having at least a child who is

less than 18 years old.

select name, age

from person

where name in (select mother

from isMother

where child in (select name

from person

where age<18))

SQL - 113

Nested queries: comments

• Nested queries may pose performance problems
to the DBMSs (since they are not very good in
optimizing the execution of such statements)

• However, nested queries are sometimes more
readable than equivalent, non-nested ones.

• In some systems, sub-queries cannot contain set
operators, but this is not a significant limitation.

SQL - 114

Nested queries, comments

• visibility rules:

– It is not possible to refer to variables (attributes)
defined in inner blocks

– If a variable or table name is omitted, the assumption
is that it refers to the «closest» variable or table

• A block can refer to varables defined in the same block or
in outer blocks, unless they are hidden by definitions of
variables with the same name.

• Semantics: the inner query is executed once for each
tuple of the outer query

SQL - 115

Return the persons having at least a child.

select *
from person
where exists (select *

from isFather
where father = name)

or
exists (select *

from isMother
where mother = name)

Attribute name refers to the relation person in the from
clause.

Nested queries: visibility

SQL - 116

Nested queries: visibility

The following query is incorrect:

select *

from employee

where depart in (select name

from department D1

where name = 'Produzione')

or

depart in (select name

from department D2

where D2.citta = D1.citta)

name surnameemployee depart

name addressdepartment city

SQL - 117

name and income of the fathers of persons earning more than 20 millions,
returning the child’s income too.

select distinct p.name, p.income, c.income
from person p, isFather, person c
where p.name = father and child = c.name

and c.income > 20

In this case the following “intuitive” nested query is not correct:

select name, income, c.income
from person
where name in (select father

from isFather
where child in (select name

from person c
where c.income > 20))

Example

SQL - 118

Nested and correlated queries

It may be necessary to use, in an inner block, variables defined in outer

blocks: in this case the query is called nested and correlated.

Example: fathers whose children earn more than 20 millions.

select distinct father

from isFather z

where not exists (select *

from isFather w, person

where w.father = z.father

and w.child = name

and income <= 20)

SQL - 119

Exercise 10: nested and correlated queries

Return name and age of every mother having at least a

child who is less than 30 years younger than her.

SQL - 120

Exercise 10: solution

Return name and age of every mother having at least a

child who is less than 30 years younger than her.

select name, age

from person p, isMother

where name = mother and

child in (select name

from person

where p.age - age < 30)

SQL - 121

Difference can be expressed by nested queries

select name from employee

except

select surname as name from employee

select name

from employee

where name not in (select surname

from employee)

SQL - 122

Intersection can be expressed by nested queries

select name from employee

intersection

select surname from employee

select name

from employee

where name in (select surname

from employee)

SQL - 123

Exercise 11: nesting and functions

Return the person(s) with maximum income.

SQL - 124

Exercise 11: solution

Return the person(s) with maximum income.

select *
from person
where income = (select max(income)

from person)

or:

select *
from person
where income >= all (select income

from person)

SQL - 125

Nested queries: condition on multiple attributes

Return the persons whose pair (age, income) is different
from all other persons.

select *

from person p

where (age,income) not in

(select age, income

from person

where name <> p.name)

SQL - 126

Nested queries in the from clause

Nested queries may appear not only in the where clause,

but also in the from clause:

select p.father

from isFather p, (select name

from person

where age > 30) c

where c.name = p.child

Semantics: the table whose alias is f, and defined as a

nested query in the from clause, is not a database table, but

is computed using the associated select query.

SQL - 127

SQL

4. Further aspects

1. Data definition

2. Data manipulation

3. Queries

4. Further aspects

SQL - 128

Generic integrity constraints: check

To specify complex constraints on a tuple or a table:

check (Condition)

create table employee

(ID character(6),

surname character(20),

name character(20),

sex character not null check (sex in (‘M’,‘F’))

salary integer,

manager character(6),

check (salary <= (select salary

from employee j

where manager = j.ID))

)

SQL - 129

Views

• A view is a table whose instance is derived from other
tables through a query.

create view ViewName [(AttributeList)] as SelectSQL

• Views are virtual tables: their instance is computed only
when they are used by other queries.

• Example:

create view adminEmp(Mat,name,surname,Stip) as
select ID, name, surname, salary
from employee
where Depart = 'Administration' and

salary > 10

SQL - 130

Nested queries in the having clause

• Return the age of persons such that sum of the income of persons
having that age is maximum.

• Assuming there are no null values in the income attribute, and
using a nested query in the having clause:

select age
from person
group by age
having sum(income) >= all (select sum(income)

from person
group by age)

SQL - 131

Solution with views

create view ageincome(age,total-income) as

select age, sum(income)

from person

group by age

select age

from ageincome

where total-income = (select max(total-income)

from ageincome)

