Knowledge representation and semantic technologies

prof. Riccardo Rosati

corso di laurea magistrale in Ingegneria informatica
Sapienza Università di Roma, 2015/2016

Exercises on Description Logics

Exercise 1 Given the following TBox:

A	\sqsubseteq	B
B	\sqsubseteq	C
C	\sqsubseteq	$\exists R . D$
D	\sqsubseteq	$\neg A$

1. tell whether the TBox \mathcal{T} is satisfiable, and if so, show a model for \mathcal{T};
2. tell whether the concept D is satisfiable with respect to \mathcal{T}, and if so, show a model for \mathcal{T} where the interpretation of D is non-empty;
3. tell whether the concept expression $A \sqcap D$ is satisfiable with respect to \mathcal{T}, and if so, show a model for \mathcal{T} where the interpretation of $A \sqcap D$ is non-empty.

Solution

1. Let \mathcal{I} be the interpretation over the domain $\Delta^{\mathcal{I}}=\{d\}$ such that $A^{\mathcal{I}}=B^{\mathcal{I}}=C^{\mathcal{I}}=D^{\mathcal{I}}=$ $R^{\mathcal{I}}=\emptyset$. It is immediate to see that all the axioms of \mathcal{T} are satisfied in \mathcal{I} : e.g., since $A^{\mathcal{I}}$ is empty, it is obviously true that $A^{\mathcal{I}} \subseteq B^{\mathcal{I}}$, hence the first axiom of \mathcal{T} is satisfied by \mathcal{I}. Consequently, \mathcal{I} is a model for \mathcal{T}, which implies that \mathcal{T} is satisfiable.
2. To prove that the concept D is satisfiable with respect to \mathcal{T} we have to show a model for \mathcal{T} where the interpretation of D is non-empty. Now, the above model \mathcal{I} does not show that D is satisfiable with respect to \mathcal{T}, because $D^{\mathcal{I}}$ is empty. So, we define a new interpretation \mathcal{J}, over the domain $\Delta^{\mathcal{J}}=\{d\}$, such that $A^{\mathcal{J}}=B^{\mathcal{J}}=C^{\mathcal{J}}=R^{\mathcal{J}}=\emptyset$ and $D^{\mathcal{J}}=\{d\}$. Again, it is immediate to verify that all the axioms of \mathcal{T} are satisfied in \mathcal{J}. In particular, $D \sqsubseteq \neg A$ is satisfied since $(\neg A)^{\mathcal{J}}=\Delta^{\mathcal{J}}=\{d\}$. Consequently, \mathcal{J} is a model for \mathcal{T}.
3. Since the TBox \mathcal{T} contains the axiom $D \sqsubseteq \neg A$, it follows that every model \mathcal{I} for \mathcal{T} is such that $D^{\mathcal{I}} \subseteq(\neg A)^{\mathcal{I}}$, i.e., $D^{\mathcal{I}} \cap A^{\mathcal{I}}=\emptyset$. Consequently, no model \mathcal{I} for \mathcal{T} exists such that $(A \sqcap D)^{\mathcal{I}}$ is non-empty.

Exercise 2 Given the knowledge base (KB) $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, where \mathcal{T} is the following TBox:

$$
\begin{array}{ll}
\text { (Ax1) } & A \sqsubseteq B \\
(\operatorname{Ax2)} & B \sqsubseteq C \\
(\operatorname{Ax3}) & C \sqsubseteq \exists R . D \\
\text { (Ax4) } & D \sqsubseteq \neg A \\
\text { (Ax5) } & A \sqsubseteq \forall R . A
\end{array}
$$

and \mathcal{A} is the following ABox :

$$
\{A(a), D(c), R(a, b), R(b, c)\}
$$

1. using the tableau method, tell whether the $\mathrm{KB} \mathcal{K}$ is satisfiable (i.e., consistent), and if so, show a model for \mathcal{K};
2. now consider the $\mathrm{KB} \mathcal{K}^{\prime}$ obtained from \mathcal{K} by deleting axiom (Ax1) in the TBox. Tell whether the concept assertion $\neg A \sqcup \neg D(c)$ is entailed by \mathcal{K}^{\prime}, using the tableau method.

Solution, point 1

We start by considering point 1 of the exercise. First, $\top_{G C I}$ for the given TBox is the following concept expression:

$$
\top_{G C I}=(\neg A \sqcup B) \sqcap(\neg B \sqcup C) \sqcap(\neg C \sqcup \exists R . D) \sqcap(\neg D \sqcup \neg A) \sqcap(\neg A \sqcup \forall R . A)
$$

Now, we start the tableau from the initial ABox $\mathcal{A}_{0}=\mathcal{A}$:

$$
\mathcal{A}_{0}=\{A(a), D(c), R(a, b), R(b, c)\}
$$

We then apply the tableau $\top_{G C I}$-rule to the individual a, obtaining

$$
\mathcal{A}_{1}=\mathcal{A}_{o} \cup\{((\neg A \sqcup B) \sqcap(\neg B \sqcup C) \sqcap(\neg C \sqcup \exists R . D) \sqcap(\neg D \sqcup \neg A) \sqcap(\neg A \sqcup \forall R . A))(a)\}
$$

We then apply the tableau and-rule to the last assertion, obtaining

$$
\mathcal{A}_{2}=\mathcal{A}_{1} \cup\{(\neg A \sqcup B)(a),(\neg B \sqcup C)(a),(\neg C \sqcup \exists R . D)(a),(\neg D \sqcup \neg A)(a),(\neg A \sqcup \forall R . A)(a)\}
$$

We then apply the tableau or-rule to the assertion $(\neg A \sqcup B)(a)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{3}=\mathcal{A}_{2} \cup\{\neg A(a)\} \\
& \mathcal{A}_{4}=\mathcal{A}_{2} \cup\{B(a)\}
\end{aligned}
$$

Now, \mathcal{A}_{3} contains the clash $\{A(a), \neg A(a)\}$ (since $\left.A(a) \in \mathcal{A}_{0}\right)$, so it is closed. We then consider \mathcal{A}_{4} and apply the tableau or-rule to the assertion $(\neg B \sqcup C)(a)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{5}=\mathcal{A}_{4} \cup\{\neg B(a)\} \\
& \mathcal{A}_{6}=\mathcal{A}_{4} \cup\{C(a)\}
\end{aligned}
$$

Now, \mathcal{A}_{5} contains the clash $\{B(a), \neg B(a)\}$ (since $B(a) \in \mathcal{A}_{4}$), so it is closed. We then consider \mathcal{A}_{6} and apply the tableau or-rule to the assertion $(\neg C \sqcup \exists R . D)(a)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{7}=\mathcal{A}_{6} \cup\{\neg C(a)\} \\
& \mathcal{A}_{8}=\mathcal{A}_{6} \cup\{\exists R . D(a)\}
\end{aligned}
$$

Now, \mathcal{A}_{7} contains the clash $\{C(a), \neg C(a)\}$ (since $\left.C(a) \in \mathcal{A}_{6}\right)$, so it is closed. We then consider \mathcal{A}_{8} and apply the tableau \exists-rule to the assertion $\exists R$. $D(a)$, obtaining

$$
\mathcal{A}_{9}=\mathcal{A}_{8} \cup\{R(a, x), D(x)\}
$$

We now apply the tableau or-rule to the assertion $(\neg D \sqcup \neg A)(a)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{10}=\mathcal{A}_{9} \cup\{\neg D(a)\} \\
& \mathcal{A}_{11}=\mathcal{A}_{9} \cup\{\neg A(a)\}
\end{aligned}
$$

Now, \mathcal{A}_{11} contains the clash $\{A(a), \neg A(a)\}$ (since $\left.A(a) \in \mathcal{A}_{0}\right)$, so it is closed. We then consider \mathcal{A}_{10} and apply the tableau or-rule to the assertion $(\neg A \sqcup \forall R . A)(a)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{12}=\mathcal{A}_{10} \cup\{\neg A(a)\} \\
& \mathcal{A}_{13}=\mathcal{A}_{10} \cup\{\forall R . A(a)\}
\end{aligned}
$$

Again, \mathcal{A}_{12} contains the clash $\{A(a), \neg A(a)\}$ (since $A(a) \in \mathcal{A}_{0}$), so it is closed. We now consider \mathcal{A}_{13} and apply the tableau \forall-rule to the assertion $\forall R . A(a)$ (notice that $A(a)$ and $R(a, x)$ belong to $\left.\mathcal{A}_{13}\right)$, obtaining

$$
\mathcal{A}_{14}=\mathcal{A}_{13} \cup\{A(x)\}
$$

We then apply the tableau $\top_{G C I}$-rule to the individual x, obtaining

$$
\mathcal{A}_{15}=\mathcal{A}_{14} \cup\{((\neg A \sqcup B) \sqcap(\neg B \sqcup C) \sqcap(\neg C \sqcup \exists R . D) \sqcap(\neg D \sqcup \neg A) \sqcap(\neg A \sqcup \forall R . A))(x)\}
$$

We then apply the tableau and-rule to the last assertion, obtaining

$$
\mathcal{A}_{16}=\mathcal{A}_{15} \cup\{(\neg A \sqcup B)(x),(\neg B \sqcup C)(x),(\neg C \sqcup \exists R . D)(x),(\neg D \sqcup \neg A)(x),(\neg A \sqcup \forall R . A)(x)\}
$$

We then apply the tableau or-rule to the assertion $(\neg D \sqcup A)(x)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{17}=\mathcal{A}_{16} \cup\{\neg D(x)\} \\
& \mathcal{A}_{18}=\mathcal{A}_{16} \cup\{\neg A(x)\}
\end{aligned}
$$

Now, notice that $D(x) \in \mathcal{A}_{9}$, therefore \mathcal{A}_{17} contains the clash $D(x), \neg D(x)$. Moreover, notice that $A(x) \in \mathcal{A}_{14}$, therefore \mathcal{A}_{18} contains the clash $A(x), \neg A(x)$.

Consequently, all the ABoxes (branches) generated by the tableau are closed. We can thus conclude that the knowledge base $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$ of point 1 is inconsistent (unsatisfiable).

Solution, point 2

We now consider point 2 of the exercise. First, $\top_{G C I}$ for the given TBox is the following concept expression:

$$
\top_{G C I}=(\neg B \sqcup C) \sqcap(\neg C \sqcup \exists R . D) \sqcap(\neg D \sqcup \neg A) \sqcap(\neg A \sqcup \forall R . A)
$$

Now, we start the tableau from the initial $\operatorname{ABox} \mathcal{A}_{0}$ obtained by the $\mathrm{ABox} \mathcal{A}$ of point 1 adding the negation of the assertion $\neg A \sqcup \neg D(c)$:

$$
\mathcal{A}_{0}=\mathcal{A} \cup\{A \sqcap D(c)\}
$$

We apply the tableau and-rule to the above assertion, obtaining

$$
\mathcal{A}_{1}=\mathcal{A}_{0} \cup\{A(c), D(c)\}
$$

We then apply the tableau $\top_{G C I}$-rule to the individual c, obtaining

$$
\left.\mathcal{A}_{2}=\mathcal{A}_{1} \cup\{(\neg B \sqcup C) \sqcap(\neg C \sqcup \exists R . D) \sqcap(\neg D \sqcup \neg A) \sqcap(\neg A \sqcup \forall R . A))(c)\right\}
$$

We then apply the tableau and-rule to the last assertion, obtaining

$$
\mathcal{A}_{3}=\mathcal{A}_{2} \cup\{(\neg B \sqcup C)(a),(\neg C \sqcup \exists R . D)(a),(\neg D \sqcup \neg A)(a),(\neg A \sqcup \forall R . A)(c)\}
$$

We then apply the tableau or-rule to the assertion $(\neg D \sqcup \neg A)(c)$, obtaining

$$
\begin{aligned}
& \mathcal{A}_{4}=\mathcal{A}_{3} \cup\{\neg D(c)\} \\
& \mathcal{A}_{5}=\mathcal{A}_{3} \cup\{\neg A(c)\}
\end{aligned}
$$

Now, \mathcal{A}_{4} contains the clash $\{D(c), \neg D(c)\}$ (since $D(c) \in \mathcal{A}_{1}$), so it is closed. Moreover, \mathcal{A}_{5} contains the clash $\{A(c), \neg A(c)\}$ (since $A(c) \in \mathcal{A}_{1}$), so it is closed too.

Consequently, all the ABoxes (branches) generated by the tableau are closed. We can thus conclude that the knowledge base \mathcal{K}^{\prime} entails the assertion $\neg A \sqcup \neg D(c)$.

Exercise 3 Given the knowledge base (KB) $\mathcal{K}=\langle\mathcal{T}, \mathcal{A}\rangle$, where \mathcal{T} is the following TBox:

A	\sqsubseteq	$B \sqcup C$
B	\sqsubseteq	$\exists R . D$
C	\sqsubseteq	$\exists R . E$
A	\sqsubseteq	$\forall R . F$
$D \sqcap F$	\sqsubseteq	G

and \mathcal{A} is the following ABox:

$$
A(a)
$$

1. using the tableau method, tell whether the concept assertion $\exists R .(E \sqcap G)(a)$ is entailed by \mathcal{K};
2. using the tableau method, tell whether the concept assertion $(\exists R . E) \sqcap(\exists R . G)(a)$ is entailed by \mathcal{K}.
