
OWL 2

Riccardo Rosati

Corso di Laurea Magistrale in Ingegneria Informatica

Sapienza Università di Roma

2015/2016

Knowledge Representation and Semantic Technologies

OWL 2 2

Weak sides of OWL 1

• OWL 1 = first release of OWL (2004)

• Three versions of OWL 1:

• OWL Full: undecidable

• OWL-DL: reasoning is exponential

• OWL-Lite: almost same complexity as OWL-DL

• Main criticism: processing OWL is computationally

too expensive (exponential)

• especially in Semantic Web applications, scalability

(or at least tractability) of processing/reasoning is a

crucial property

OWL 2 3

Limits of OWL-DL reasoners

• performance of OWL-DL reasoners:

• “practically good” for the intensional level

• the size of a TBox is not likely to scale up too

much

• not good for the extensional level

• unable to handle instances (ABoxes) of large size

(or even medium size)...

• ...even for the basic extensional service (instance

checking)

OWL 2 4

Limits of OWL-DL reasoners

• why are these tools so bad with (large) ABoxes?

• two main reasons:

• current algorithms are mainly derived by algorithms

defined for purely intensional tasks

• no real optimization for ABox services

• these algorithms work in main memory

=> bottleneck for very large instances

OWL 2 5

OWL-DL technology vs. large instances

• the limits of OWL-DL reasoners make it impossible

to use these tools for real data integration on the

web

• web sources are likely to be data intensive sources

• e.g., relational databases accessed through a web

interface

• on the other hand, data integration is the prominent

(future) application for Semantic Web technology!

[Berners-Lee et al., IEEE Intelligent Systems, May

2006]

OWL 2 6

A solution: OWL profiles

• how to overcome these limitations if we want to

build data-intensive Semantic Web applications?

• solution 1 : do not reason over ontologies

• solution 2: limit the expressive power of the

ontology language

=> tractable fragments of OWL (OWL profiles)

• solution 3: wait for more efficient OWL-DL

reasoners

• to arrive at solution 2, we may benefit from the new

technology developed for OWL tractable fragments

OWL 2 7

Tractable OWL fragments

• idea: sacrifice part of the expressiveness of the

ontology language to have more efficient ontology

tools

• OWL Lite is a standardized fragment of OWL-DL

• is OWL Lite OK?

• NO! it is still too expressive for ABox reasoning

(OWL Lite is not really “lite”!)

OWL 2 8

Tractable OWL fragments

• The second version of OWL (called OWL2) became

a W3C recommendation on October 2009

• Besides the OWL2 Full language and the OWL2 DL

language, this recommendation contains three

fragments of OWL2 DL called OWL 2 PROFILES:

• OWL 2 QL based on the DL DL-Lite

• OWL 2 EL based on the DL EL

• OWL 2 RL based on the DL RL

OWL 2 9

DL-Lite

• DL-Lite is a tractable OWL-DL fragment

• defined by the DIS-Sapienza DASI research group

• main objectives:

• allow for very efficient treatment of large

ABoxes...

• ...even for very expressive queries (conjunctive

queries)

OWL 2 10

The DL-Lite family

• DL-Lite is a family of Description Logics

• DL-Litecore = basic DL-Lite language

• main DL-Lite dialects:

• DL-LiteF (DL-Litecore + role functionality)

• DL-LiteR (DL-Litecore + role hierarchies)

• DL-LiteA (DL-LiteF + DL-LiteR + attributes +

domains)

• the current OWL 2 QL proposal is based on DL-LiteR

OWL 2 11

DL-LiteF syntax

• DL-LiteF TBox = set of

- concept inclusions

- concept disjointness assertions

- functional assertions (stating that a role is functional)

• DL-LiteF ABox = set of ground atoms, i.e., assertions

- A(a) with A concept name

- R(a,b) with R role name

concept expressions:

- atomic concept A

- role domain ∃R

- role range ∃R-

role expressions:

- atomic role R

- inverse atomic role R-

OWL 2 12

Example

MALE ⊑ PERSON concept inclusion

FEMALE ⊑ PERSON concept inclusion

PERSON ⊑ ∃hasFather concept inclusion

∃hasFather¯ ⊑ MALE concept inclusion

PERSON ⊑ ∃hasMother concept inclusion

∃hasMother¯ ⊑ FEMALE concept inclusion

MALE ⊑¬FEMALE concept disjointness

funct(hasMother) role functionality

MALE(Bob), MALE(Paul), FEMALE(Ann),

hasFather(Paul,Ann), hasMother(Mary,Paul)

TBox:

ABox:

OWL 2 13

Expressiveness of DL-Lite vs. OWL-DL

main expressive limitations of DL-Lite w.r.t. OWL-DL:

1. restricted disjunction:

• no explicit disjunction

• binary Horn implications (concept and role inclusions)

2. restricted negation:

• no explicit negation

• concept (and role) disjointness

3. restricted existential quantification:

• e.g., no qualified existential concepts

4. limited role cardinality restrictions:

• only role functionality allowed

• not a “real” problem

OWL 2 14

Expressiveness of DL-Lite vs. RDF/RDFS

DL-Lite captures RDFS...

• RDFS classes = concepts

• RDFS properties = roles

• rdfs:subClassOf = concept inclusion

• rdfs:subPropertyOf = role inclusion

• rdfs:domain = role domain

• rdfs:range = role range

but: DL-Lite does not allow for meta-predicates

DL-Lite extends RDFS:

• “exact” role domain and range

• concept and role disjointness

• inverse roles

• functional roles

OWL 2 15

DL-Lite vs. conceptual data models

• DL-Lite captures a very large subset of the constructs of

conceptual data modeling languages (UML class diagrams, E-

R)

• e.g., DL-LiteA captures almost all the E-R model:

• entities = concepts

• binary relationships = roles

• entity attributes = concept attributes

• relationship attributes = role attributes

• cardinality constraints (0,1) = concept inclusions and role functionalities

• ...

⇒ DL-Lite = a simple yet powerful ontology language

OWL 2 16

DL-Lite abilities

tractability of TBox reasoning:

• all TBox reasoning tasks in DL-Lite are tractable, i.e.,

solvable in polynomial time

tractability of ABox+TBox reasoning:

• instance checking and instance retrieval in DL-Lite are

solvable in polynomial time

• conjunctive queries over DL-Lite ontologies can be

answered in polynomial time (actually in LogSpace)

with respect to data complexity (i.e., the size of the

ABox)

OWL 2 17

Query answering in DL-Lite

a glimpse on the query answering algorithm:

• query answering in DL-Lite can be reduced to
evaluation of an SQL query over a relational
database (this is the first-order rewritability property)

• query answering by query rewriting + relational database
evaluation:

1. the ABox is stored in a relational database (set of
unary and binary tables)

2. the conjunctive query Q is rewritten with respect to
the TBox, obtaining an SQL query Q’

3. query Q’ is passed to the DBMS which returns the
answers

OWL 2 18

Query answering in DL-Lite

query Q’

(SQL)Query

expander
DBMS

ABox

query Q

(UCQ)

TBox

answers to Q’

OWL 2 19

Example

TBox:

MALE ⊑ PERSON FEMALE ⊑ PERSON

MALE ⊑¬FEMALE PERSON ⊑ ∃hasFather

∃hasFather¯ ⊑ MALE PERSON ⊑ ∃hasMother

∃hasMother¯ ⊑ FEMALE

input query:

q(x) :- PERSON(x)

rewritten query:

q’(x) :- PERSON(x) ∨

FEMALE(x) ∨

MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)

OWL 2 20

Example

ABox:

MALE(Bob)
MALE(Paul)
FEMALE(Ann)
hasFather(Ann,Paul)
hasMother(Paul,Mary)

rewritten query:

q’(x) :- PERSON(x) ∨

FEMALE(x) ∨

MALE(x) ∨
hasFather(y,x) ∨

hasMother(y,x)

answers to query:
{ Bob, Paul, Ann, Mary }

OWL 2 21

Answering queries: chasing the ABox

MALE(Bob) MALE(Paul) FEMALE(Ann) hasFather(Paul,Ann) hasMother(Mary,Paul)

PERSON(Bob)

hasFather(Bob,x1) hasMother(Bob,x2)

MALE(x1) FEMALE(x2)

PERSON(x1) PERSON(x2)

(6)

(1)

(4)

(5)

(1)

.....

(2)

(7)

(4) (6) (6)(4)

.....

CHASE of the ABox
with respect to the TBox
= adding to the ABox all
instance assertions that
are logical consequences
of the TBox

the chase represents the
canonical model of the
whole KB

problem: the chase of the
ABox is in general
infinite

.....

OWL 2 22

Query rewriting algorithm for DL-Lite

q(x) :- PERSON(x)

q(x) :- MALE(x) q(x) :- FEMALE(x)

q(x) :- hasFather(y,x) q(x) :- hasMother(y,x)

how to avoid the infinite chase of the ABox?

CHASE of the query:

• inclusions are applied “from right to left”

• this chase always terminates

• this chase is computed independently of the ABox

OWL 2 23

Query rewriting algorithm for DL-Lite

the rewriting algorithm iteratively applies two rewriting
rules:

• atom-rewrite

• reduce

OWL 2 24

Atom-rewrite

atom-rewrite takes an atom of the conjunctive query and
rewrites it applying a TBox inclusion

The inclusion is used as a rewriting rule (right-to-left)

Example:

• T = { D ⊑ C }

• q :- C(x), R(x,y), D(y)

• atom-rewrite(q, C(x), D ⊑ C) = q :- D(x), R(x,y), D(y)

OWL 2 25

Reduce

reduce takes two unifiable atoms of the conjunctive
query and merges (unifies) them

Example:

• q :- C(x), R(x,y), R(y,z), D(z)

• reduce(q, R(x,y), R(y,z)) = q:- C(x), R(x,x), D(x)

(the unification of R(x,y) and R(y,z) implies x=y=z)

OWL 2 26

Query rewriting algorithm for DL-Lite

Algorithm PerfectRef (q, T)
Input: conjunctive query q, DL-Lite TBox T

Output: union of conjunctive queries PR
PR := {q};
repeat

PR0 := PR;
for each q ∈ PR0 do

(a) for each g in q do
for each positive inclusion I in T do

if I is applicable to g
then PR := PR ∪{atom-rewrite(q,g,I)};

(b) for each g1, g2 in q do
if g1 and g2 unify then PR := PR ∪{reduce(q,g1,g2)}

until PR0 = PR;
return PR

OWL 2 27

Reasoning in DL-Lite

• this query answering technique is in LOGSPACE with
respect to data (ABox) complexity

• polynomial technique for deciding KB consistency in
DL-Lite

• all main reasoning tasks in DL-Lite can be reduced to
either KB consistency or query answering

=> all main reasoning tasks in DL-Lite are tractable

OWL 2 28

QuOnto

• QuOnto is a reasoner for DL-Lite

• developed by DASI lab at DIS-Sapienza

• implements the above answering technique for
conjunctive queries

• able to deal with very large instances (comparable to
standard relational databases!)

• currently used in MASTRO, a system for ontology-
based data integration

OWL 2 29

MASTRO (single database)

Query

expander
TBox

DBMS

Query

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

(virtual ABox)

OWL 2 30

MASTRO-I (data integration)

Query

expander
TBox

Query

unfolder
mapping

query Q’ (UCQ)

query Q’’ (SQL)

query Q (UCQ)

.....DBMS DBMS DBMS

Data federation

OWL 2 31

The EL family of DLs

• The EL family of description logics underlies the OWL 2 EL

profile

• Several members:

• EL (core language)

• EL
⊥

• ELH

• EL++

• …

OWL 2 32

Syntax of EL

• EL TBox = set of concept inclusions

• EL ABox = set of ground atoms, i.e., assertions

- A(a) with A concept name

- R(a,b) with R role name

concept expressions:

- atomic concept A

- concept conjunction C1 ⊓ C2

- qualified existential ∃R.C

role expressions:

- atomic role R

OWL 2 33

EL ontology: Example

TBox:

MALE ⊑ PERSON

FEMALE ⊑ PERSON

PERSON ⊑ ∃hasFather.MALE

PERSON ⊑ ∃hasMother.FEMALE

STUDENT ⊓ EMPLOYEE ⊑WORKING-STUDENT

ABox:

MALE(Bob), MALE(Paul), FEMALE(Ann),

hasFather(Paul,Ann), hasMother(Mary,Paul),

HAPPY(Ann), EMPLOYEE(Paul), STUDENT(Paul)

OWL 2 34

Computational properties of EL

Complexity of reasoning in EL (and in other languages of this

family):

• Intensional (TBox) reasoning is PTIME-complete (i.e., tractable)

• Instance checking is PTIME-complete

• Conjunctive query answering is PTIME-complete with respect to

data complexity

• This implies that first-order rewritability does NOT hold for

EL

• Conjunctive query answering is NP-complete with respect to

combined complexity

OWL 2 35

The Description Logic RL: Syntax

• RL TBox =

• set of concept inclusions of the form C ⊑A or C ⊑ ⊥

• set of role inclusions R1 ⊑ R2

• RL ABox = set of ground atoms, i.e., assertions

- A(a) with A concept name

- R(a,b) with R role name

concept expressions:

- atomic concept A

- concept conjunction C1 ⊓ C2

- qualified existential ∃R.C

- qualified existential ∃R.⊥

role expressions:

- atomic role R

- inverse role R-

OWL 2 36

RL ontology: Example

MALE ⊑ PERSON

FEMALE ⊑ PERSON

hasMother ⊑ hasParent

hasFather ⊑ hasParent

MALE ⊓ FEMALE ⊑ ⊥

STUDENT ⊓ EMPLOYEE ⊑WORKING-STUDENT

∃hasParent.HAPPY ⊑ HAPPY

MALE(Bob), MALE(Paul), FEMALE(Ann),

hasFather(Paul,Ann), hasMother(Mary,Paul),

HAPPY(Ann), EMPLOYEE(Paul), STUDENT(Paul)

TBox:

ABox:

OWL 2 37

Computational properties of RL

Complexity of reasoning in RL:

• Intensional (TBox) reasoning is PTIME-complete (i.e., tractable)

• Instance checking is PTIME-complete

• Conjunctive query answering is PTIME-complete with respect to

data complexity

• This implies that first-order rewritability does NOT hold for

RL

• Conjunctive query answering is NP-complete with respect to

combined complexity

• Reasoning in RL can be reduced to reasoning in positive Datalog

OWL 2 38

Reasoning in RL (and RDFS)

ABox reasoning and query answering in RL (and RDFS) can be

done through forward chaining (a.k.a. materialization), which

corresponds to the chase procedure mentioned above.

• Chase of the ABox with respect to the TBox = adding to the ABox

all instance assertions that are logical consequences of the TBox

• In the case of RL (and RDFS) no new individual is introduced by

the chase, so this procedure always terminates (and requires

polynomial time)

• After this materialization step, the TBox can be discarded and

conjunctive queries can be answered by evaluating them on the

materialized ABox

OWL 2 39

Reasoning in RL: Example

MALE ⊑ PERSON

FEMALE ⊑ PERSON

hasMother⊑ hasParent

hasFather⊑ hasParent

MALE ⊓ FEMALE ⊑ ⊥

STUDENT ⊓ EMPLOYEE ⊑

WORKING-STUDENT
∃hasParent.HAPPY ⊑ HAPPY

MALE(Bob), MALE(Paul),

FEMALE(Ann),

hasFather(Paul,Ann),

hasMother(Mary,Paul),

HAPPY(Ann), EMPLOYEE(Paul),

STUDENT(Paul)

ABox:TBox:

OWL 2 40

Materialization

MALE ⊑ PERSON

FEMALE ⊑ PERSON

hasMother⊑ hasParent

hasFather⊑ hasParent

MALE ⊓ FEMALE ⊑ ⊥

STUDENT ⊓ EMPLOYEE ⊑

WORKING-STUDENT
∃hasParent.HAPPY ⊑ HAPPY

MALE(Bob), MALE(Paul),

FEMALE(Ann),

hasFather(Paul,Ann),

hasMother(Mary,Paul),

HAPPY(Ann), EMPLOYEE(Paul),

STUDENT(Paul),

Materialized ABox (chase):

PERSON(Bob), PERSON(Paul),

PERSON(Ann),

hasParent(Paul,Ann),

hasParent(Mary,Paul),

HAPPY(Paul), HAPPY(Mary),

WORKING-STUDENT(Paul)

TBox:

OWL 2 41

Query answering

MALE ⊑ PERSON

FEMALE ⊑ PERSON

hasMother⊑ hasParent

hasFather⊑ hasParent

MALE ⊓ FEMALE ⊑ ⊥

STUDENT ⊓ EMPLOYEE ⊑

WORKING-STUDENT
∃hasParent.HAPPY ⊑ HAPPY

MALE(Bob), MALE(Paul),

FEMALE(Ann),

hasFather(Paul,Ann),

hasMother(Mary,Paul),

HAPPY(Ann), EMPLOYEE(Paul),

STUDENT(Paul),

Materialized ABox:

PERSON(Bob), PERSON(Paul),

PERSON(Ann),

hasParent(Paul,Ann),

hasParent(Mary,Paul),

HAPPY(Paul), HAPPY(Mary),

WORKING-STUDENT(Paul)

TBox:

Query: (happy grandchildren)

q(x) :- HAPPY(x), hasParent(x,y),

hasParent(y,z).

Answer = { Mary }

OWL 2 42

References

• OWL W3C Web site:

http://www.w3.org/2004/OWL/

• OWL 2 overview:

http://www.w3.org/TR/owl2-overview/

• OWL 2 primer:

http://www.w3.org/TR/2012/REC-owl2-primer-20121211/

• OWL 2 profiles:

http://www.w3.org/TR/2012/REC-owl2-profiles-

20121211/

• SPARQL 1.1:

http://www.w3.org/TR/sparql11-query/

OWL 2 43

References

• SPARQL 1.1 entailment regimes:

http://www.w3.org/TR/2013/REC-sparql11-

entailment-20130321/

• Web page on Description Logic reasoners:

http://www.cs.man.ac.uk/~sattler/reasoners.html

• Protege (OWL ontology editor):

http://protege.stanford.edu/

OWL 2 44

References

• Hermit (OWL reasoning tool):

http://hermit-reasoner.com/

• ELK (OWL 2 EL ontology reasoner):

http://www.cs.ox.ac.uk/isg/tools/ELK/

• Stardog (OWL 2 profiles and OWL2 DL reasoner):

http://stardog.com/

• RacerPro (OWL reasoning tool):

http://franz.com/agraph/racer/

• Mastro (DL-Lite ontology-based data access system)

http://www.dis.uniroma1.it/~mastro/

