Knowledge Representation and Semantic Technologies

Exercises on OWL 2 profiles

Riccardo Rosati

Corso di Laurea Magistrale in Ingegneria Informatica Sapienza Università di Roma 2015/2016

Exercise 1

Given the following TBox:

(1) MALE \sqsubseteq PERSON

- (2) FEMALE \sqsubseteq PERSON
- (3) hasMother \sqsubseteq hasParent
- (4) hasFather \sqsubseteq hasParent
- (5) hasChild \sqsubseteq hasParent⁻
- (6) MALE \sqcap FEMALE $\sqsubseteq \perp$
- (7) \exists hasParent \sqsubseteq IS-CHILD
- (8) IS-CHILD $\sqsubseteq \exists hasParent$
- (9) \exists hasParent.HAPPY \sqsubseteq HAPPY-CHILD

(10) \exists hasChild.HAPPY \sqsubseteq HAPPY-PARENT

- (11) HAPPY-CHILD $\sqsubseteq \exists hasParent$
- (12) HAPPY-PARENT $\sqsubseteq \exists$ hasChild

(13) HAPPY-PARENT \sqcap HAPPY-CHILD \sqsubseteq HAPPY

Exercise 1

(a) Tell which of these axioms can be expressed in $DL-Lite_R$, EL, and RL, respectively;

Exercise 1

(b) given the following ABox:

MALE(Bob), MALE(Paul), FEMALE(Ann), hasMother(Paul,Ann), hasFather(Mary,Paul), hasChild(Jane,Paul), hasChild(Jane,Bob), HAPPY(Ann)

and the TBox obtained from the previous one by discarding the axioms not expressible in RL, determine the instances of the concept HAPPY by applying forward chaining;

(c) Given the above ABox and the TBox obtained from the previous one by discarding the axioms not expressible in DL_Lite_R : (c1) determine the instances of the concept HAPPY by applying query rewriting; (c2) determine the instances of the query q(x) :- hasParent(x,y) by applying query rewriting.

Exercise 1(a): Solution

The axioms expressible in DL_Lite_R are:

(1), (2), (3), (4), (5), (6), (7), (8), (11), (12)

Notice that axiom (6) can be expressed in DL-Lite_R by the equivalent axiom MALE $\sqsubseteq \neg$ FEMALE

The axioms expressible in EL are: (1), (2), (7), (8), (9), (10), (11), (12), (13)

The axioms expressible in RL are:

(1), (2), (3), (4), (5), (6), (7), (9), (10), (13)

Exercise 1(b): Solution

The ABox obtained by chasing the initial ABox with the RL axioms of the TBox is the following:

MALE(Bob), MALE(Paul), FEMALE(Ann), hasMother(Paul,Ann), hasFather(Mary,Paul), hasChild(Jane,Paul), hasChild(Jane,Bob), HAPPY(Ann), HAPPY(Mary),

PERSON(Bob), PERSON(Paul), PERSON(Ann), hasParent(Paul,Ann), hasParent(Mary,Paul), hasParent(Paul,Jane), hasParent(Bob,Jane), IS-CHILD(Paul), IS-CHILD(Mary), IS-CHILD(Jane), HAPPY-CHILD(Paul), HAPPY-PARENT(Paul), HAPPY(Paul), HAPPY-PARENT(Ann), HAPPY-CHILD(Mary), HAPPY-PARENT(Jane)

The instances of concept HAPPY are therefore {Ann, Mary, Paul}.

Exercise 1(c1): Solution

The rewriting of the query

q(x) :- HAPPY(x)

w.r.t. the DL-LiteR axioms of the TBox is simply:

q(x) :- HAPPY(x)

since there are no subconcepts of HAPPY (notice that axiom (13) is not a DL-LiteR axiom, hence it is ignored).

By evaluating such a query on the initial ABox, we obtain the answers {Ann, Mary}.

Exercise 1(c2): Solution

The rewriting of the query

q(x) :- hasParent(x,y)

w.r.t. the DL-LiteR axioms of the TBox is simply:

q(x) := hasParent(x,y) q(x) := hasMother(x,y) q(x) := hasFather(x,y) q(x) := hasChild(y,x) q(x) := IS-CHILD(x)q(x) := HAPPY-CHILD(x)

By evaluating such a query on the initial ABox, we obtain the answers {Paul, Mary, Bob}.