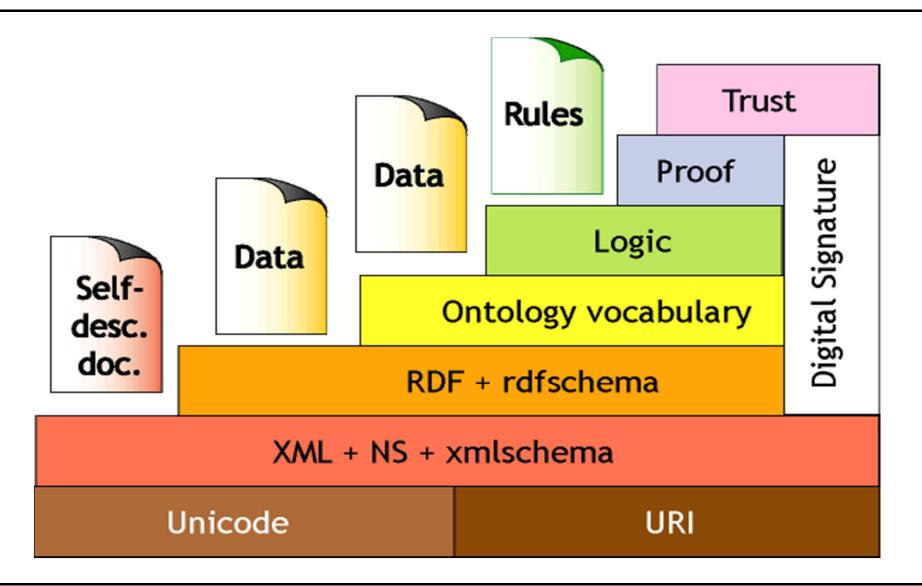
Semantic Web

Part 3 The ontology layer 1: Ontologies, Description Logics, and OWL

Riccardo Rosati


Corso di Laurea Magistrale in Ingegneria Informatica Sapienza Università di Roma 2012/2013

REMARK

Most of the material of this lecture is taken from the ISWC 2003 "Tutorial on OWL" by Sean Bechhofer, Ian Horrocks, and Peter Patel-Schneider

(http://www.cs.man.ac.uk/~horrocks/ISWC2003/Tutorial/)

The Semantic Web Tower

Ontology: origins and history

a philosophical discipline—a branch of philosophy that deals with the nature and the organisation of reality

- Science of Being (Aristotle, Metaphysics, IV, 1)
- Tries to answer the questions:

What characterizes being?

Eventually, what is being?

Ontology in computer science

- An ontology is an engineering artifact:
 - It is constituted by a specific vocabulary used to describe a certain reality, plus
 - a set of explicit assumptions regarding the intended meaning of the vocabulary.
- Thus, an ontology describes a formal specification of a certain domain:
 - Shared understanding of a domain of interest
 - Formal and machine manipulable model of a domain of interest

"An explicit specification of a conceptualisation" [Gruber93]

Ontology in computer science

- ontology = shared conceptualization of a domain of interest
- shared vocabulary
 - \Rightarrow simple (shallow) ontology
- (complex) relationships between "terms"
 - \Rightarrow deep ontology
- AI view:
 - ontology = logical theory (knowledge base)
- DB view:
 - ontology = conceptual data model

Structure of an ontology

Ontologies typically have two distinct components:

- Names for important concepts in the domain
 - Elephant is a concept whose members are a kind of animal
 - Herbivore is a concept whose members are exactly those animals who eat only plants or parts of plants
 - Adult_Elephant is a concept whose members are exactly those elephants whose age is greater than 20 years
- Background knowledge/constraints on the domain
 - Adult_Elephants weigh at least 2,000 kg
 - All Elephants are either African_Elephants or Indian_Elephants
 - No individual can be both a Herbivore and a Carnivore

Ontology languages

- Wide variety of languages for "Explicit Specification"
 - Graphical notations
 - Logic based
 - Probabilistic/fuzzy
 - ...
- Degree of formality varies widely
 - Increased formality makes languages more amenable to machine processing (e.g., automated reasoning)

Ontology languages

- Graphical notations:
 - Semantic networks
 - Topic Maps
 - UML
 - RDF

Ontology languages

- Logic based languages:
 - Description Logics (e.g., OIL, DAML+OIL, OWL)
 - Rules (e.g., RuleML, Logic Programming/Prolog)
 - First Order Logic (e.g., KIF)
 - Conceptual graphs
 - (Syntactically) higher order logics (e.g., LBase)
 - Non-classical logics (e.g., F-logic, Non-Monotonic Logics, Modal Logics)

Obect-oriented languages

many languages use object-oriented models based on:

- Objects/Instances/Individuals
 - Elements of the domain of discourse
 - Equivalent to constants in FOL
- Types/Classes/Concepts
 - Sets of objects sharing certain characteristics
 - Equivalent to unary predicates in FOL
- Relations/Properties/Roles
 - Sets of pairs (tuples) of objects
 - Equivalent to binary predicates in FOL

Web schema languages

- Existing Web languages extended to facilitate content description
 - XML \rightarrow XML Schema (XMLS)
 - RDF \rightarrow RDF Schema (RDFS)
- XMLS *not* an ontology language
 - Changes format of DTDs (document schemas) to be XML
 - Adds an extensible type hierarchy
 - Integers, Strings, etc.
 - Can define sub-types, e.g., positive integers
- RDFS *is* recognizable as an ontology language
 - Classes and properties
 - Sub/super-classes (and properties)
 - Range and domain (of properties)

Limitations of RDFS

- RDFS too weak to describe resources in sufficient detail
 - No localised range and domain constraints
 - Can't say that the range of hasChild is person when applied to persons and elephant when applied to elephants
 - No existence/cardinality constraints
 - Can't say that all *instances* of person have a mother that is also a person, or that persons have exactly 2 parents
 - No transitive, inverse or symmetrical properties
 - Can't say that isPartOf is a transitive property, that hasPart is the inverse of isPartOf or that touches is symmetrical
 - …
- Difficult to provide reasoning support
 - No "native" reasoners for non-standard semantics
 - May be possible to reason via FO axiomatisation

Web ontology language requirements

Desirable features identified for Web Ontology Language:

- Extends existing Web standards
 - Such as XML, RDF, RDFS
- Easy to understand and use
 - Should be based on familiar KR idioms
- Formally specified
- Of "adequate" expressive power
- Possible to provide automated reasoning support

From RDF to OWL

- Two languages developed to satisfy above requirements
 - OIL: developed by group of (largely) European researchers (several from EU OntoKnowledge project)
 - DAML-ONT: developed by group of (largely) US researchers (in DARPA DAML programme)
- Efforts merged to produce DAML+OIL
 - Development was carried out by "Joint EU/US Committee on Agent Markup Languages"
 - Extends ("DL subset" of) RDF
- DAML+OIL submitted to W3C as basis for standardisation
 - Web-Ontology (WebOnt) Working Group formed
 - WebOnt group developed OWL language based on DAML+OIL
- OWL language became a W3C Recommendation in 2004

OWL

- OWL = Web Ontology Language
- the OWL family is constituted by 3 different languages (with different expressive power):
 - OWL Full
 - OWL-DL
 - OWL-Lite
- technology at an "early" stage
 - standardized in 2004
 - reasoning techniques and tools are very recent
 - "optimization" of reasoning unexplored
 - 2009: W3C standardization of OWL 2

OWL language

- Three species of OWL
 - OWL full is union of OWL syntax and RDF
 - OWL DL restricted to FOL fragment (DAML+OIL)
 - OWL Lite is "easier to implement" subset of OWL DL
- Semantic layering
 - OWL DL = OWL full within DL fragment
 - DL semantics officially definitive
- OWL DL based on SHIQ Description Logic
 - In fact it is equivalent to $\frac{\text{SHOIN}(D_n)}{\text{DL}}$
- OWL DL Benefits from many years of DL research
 - Well defined semantics
 - Formal properties well understood (complexity, decidability)
 - Known reasoning algorithms
 - Implemented systems (highly optimised)

OWL class constructors

Constructor	DL Syntax	Example	Modal Syntax
intersectionOf	$C_1 \sqcap \ldots \sqcap C_n$	Human ⊓ Male	$C_1 \wedge \ldots \wedge C_n$
unionOf	$C_1 \sqcup \ldots \sqcup C_n$	Doctor ⊔ Lawyer	$C_1 \vee \ldots \vee C_n$
complementOf	$\neg C$	¬Male	$\neg C$
oneOf	$\{x_1\} \sqcup \ldots \sqcup \{x_n\}$	{john} ⊔ {mary}	$x_1 \lor \ldots \lor x_n$
allValuesFrom	$\forall P.C$	∀hasChild.Doctor	[P]C
someValuesFrom	$\exists P.C$	∃hasChild.Lawyer	$\langle P \rangle C$
maxCardinality	$\leqslant nP$	≤1hasChild	$[P]_{n+1}$
minCardinality	$\geqslant nP$	≥2hasChild	$\langle P \rangle_n$

- XMLS datatypes as well as classes in \forall P.C and \exists P.C
 - E.g., ∃hasAge.nonNegativeInteger
- Arbitrarily complex nesting of constructors
 - − E.g., Person \sqcap \forall hasChild.Doctor \sqcup ∃hasChild.Doctor

RDFS syntax

E.g., concept Person □ ∀hasChild.Doctor ⊔∃hasChild.Doctor:

```
<owl:Class>
  <owl:intersectionOf rdf:parseType=" collection">
    <owl:Class rdf:about="#Person"/>
    <owl:Restriction>
      <owl:onProperty rdf:resource="#hasChild"/>
      <owl:toClass>
        <owl:unionOf rdf:parseType=" collection">
          <owl:Class rdf:about="#Doctor"/>
          <owl:Restriction>
            <owl:onProperty rdf:resource="#hasChild"/>
            <owl:hasClass rdf:resource="#Doctor"/>
          </owl:Restriction>
        </owl:unionOf>
      </owl:toClass>
    </owl:Restriction>
  </owl:intersectionOf>
</owl:Class>
```

OWL axioms

Axiom	DL Syntax	Example
subClassOf	$C_1 \sqsubseteq C_2$	Human \sqsubseteq Animal \sqcap Biped
equivalentClass	$C_1 \equiv C_2$	$Man \equiv Human \sqcap Male$
disjointWith	$C_1 \sqsubseteq \neg C_2$	Male $\sqsubseteq \neg$ Female
sameIndividualAs	$\{x_1\} \equiv \{x_2\}$	${President_Bush} \equiv {G_W_Bush}$
differentFrom	$\{x_1\} \sqsubseteq \neg \{x_2\}$	${\rm john} \sqsubseteq \neg {\rm peter}$
subPropertyOf	$P_1 \sqsubseteq P_2$	hasDaughter ⊑ hasChild
equivalentProperty	$P_1 \equiv P_2$	$cost \equiv price$
inverseOf	$P_1 \equiv P_2^-$	hasChild \equiv hasParent ⁻
transitiveProperty	$P^+ \sqsubseteq \tilde{P}$	ancestor $+ \sqsubseteq$ ancestor
functionalProperty	$\top \sqsubseteq \overset{-}{\leqslant} 1P$	$\top \sqsubseteq \leq 1$ has Mother
inverseFunctionalProperty	$\top \sqsubseteq \leqslant 1P^-$	$\top \sqsubseteq \leq 1$ hasSSN ⁻

Axioms (mostly) reducible to inclusion (\sqsubseteq)

 $C \equiv D \text{ iff both } C \sqsubseteq D \text{ and } D \sqsubseteq C$

XML Schema datatypes in OWL

•OWL supports XML Schema primitive datatypes

–E.g., integer, real, string, ...

•Strict separation between "object" classes and datatypes

–Disjoint interpretation domain Δ_D for datatypes

•For a datavalue d, $d^{\mathcal{I}} \subseteq \Delta_{D}$

•And $\Delta_{\mathrm{D}} \cap \Delta^{\mathcal{I}} = \emptyset$

–Disjoint "object" and datatype properties

•For a datatype propterty P, $P^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta_D$

•For object property S and datatype property P, $S^{\mathcal{I}} \cap P^{\mathcal{I}} = \emptyset$

•Equivalent to the ''(D_n)" in $\mathcal{SHOIN}(D_n)$

Why separate classes and datatypes?

- Philosophical reasons:
 - Datatypes structured by built-in predicates
 - Not appropriate to form new datatypes using ontology language
- Practical reasons:
 - Ontology language remains simple and compact
 - Semantic integrity of ontology language not compromised
 - Implementability not compromised can use hybrid reasoner

OWL DL semantics

- Mapping OWL to equivalent DL $(SHOIN(D_n))$:
 - Facilitates provision of reasoning services (using DL systems)
 - Provides well defined semantics
- DL semantics defined by interpretations: $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where
 - $\Delta^{\mathcal{I}}$ is the domain (a non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function that maps:
 - Concept (class) name $A \to \text{subset } A^{\mathcal{I}} \text{ of } \Delta^{\mathcal{I}}$
 - Role (property) name $R \to \text{binary relation } R^{\mathcal{I}} \text{ over } \Delta^{\mathcal{I}}$
 - Individual name $i \to i^{\mathcal{I}}$ element of $\Delta^{\mathcal{I}}$

DL semantics

 Interpretation function ·^I extends to concept expressions in an obvious way, i.e.:

$$(C \sqcap D)^{\mathcal{I}} = C^{\mathcal{I}} \cap D^{\mathcal{I}}$$
$$(C \sqcup D)^{\mathcal{I}} = C^{\mathcal{I}} \cup D^{\mathcal{I}}$$
$$(\neg C)^{\mathcal{I}} = \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}}$$
$$\{x\}^{\mathcal{I}} = \{x^{\mathcal{I}}\}$$
$$(\exists R.C)^{\mathcal{I}} = \{x \mid \exists y. \langle x, y \rangle \in R^{\mathcal{I}} \land y \in C^{\mathcal{I}}\}$$
$$(\forall R.C)^{\mathcal{I}} = \{x \mid \forall y. (x, y) \in R^{\mathcal{I}} \Rightarrow y \in C^{\mathcal{I}}\}$$
$$(\leqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \leqslant n\}$$
$$(\geqslant nR)^{\mathcal{I}} = \{x \mid \#\{y \mid \langle x, y \rangle \in R^{\mathcal{I}}\} \geqslant n\}$$

DL knowledge bases (ontologies)

- An OWL ontology maps to a DL Knowledge Base $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$
 - $\mathcal{T}(\text{Tbox})$ is a set of axioms of the form:
 - $C \sqsubseteq D$ (concept inclusion)
 - $C \equiv D$ (concept equivalence)
 - $R \sqsubseteq S$ (role inclusion)
 - $R \equiv S$ (role equivalence)
 - $R^+ \sqsubseteq R$ (role transitivity)
 - $\mathcal{A}(Abox)$ is a set of axioms of the form
 - $x \in D$ (concept instantiation)
 - $\langle x,y \rangle \in R$ (role instantiation)

DL knowledge bases (ontologies)

- Two sorts of TBox axioms often distinguished:
 - "Definitions"
 - $C \sqsubseteq D$ or $C \equiv D$ where C is a concept name
 - General Concept Inclusion axioms (GCIs)
 - $C \sqsubseteq D$ where C,D arbitrary concept expressions
 - (also role inclusions: $R \sqsubseteq S$ where R,S arbitrary role expressions)

Knowledge base semantics

- An interpretation \mathcal{I} satisfies (models) an axiom A ($\mathcal{I} \models A$):
 - $\hspace{0.1in} \mathcal{I} \models C \sqsubseteq D \hspace{0.1in} I \models \mathrm{ff} \hspace{0.1in} \mathrm{C}^{\mathcal{I}} \subseteq \mathrm{D}^{\mathcal{I}}$
 - $\mathcal{I} \models C \equiv D \text{ iff } C^{\mathcal{I}} = D^{\mathcal{I}}$
 - $\mathcal{I} \models R \sqsubseteq S \text{ iff } R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$
 - $\mathcal{I} \models R \equiv S \text{ iff } R^{\mathcal{I}} = S^{\mathcal{I}}$
 - $\mathcal{I} \models \mathbb{R}^+ \sqsubseteq \mathbb{R} \text{ iff } (\mathbb{R}^{\mathcal{I}})^+ \subseteq \mathbb{R}^{\mathcal{I}}$
 - $\mathcal{I} \models x \in D \text{ iff } x^{\mathcal{I}} \in D^{\mathcal{I}}$
 - $\mathcal{I} \models \langle x, y \rangle \in R$ iff $(x^{\mathcal{I}}, y^{\mathcal{I}}) \in R^{\mathcal{I}}$
- \mathcal{I} satisfies a TBox \mathcal{T} ($\mathcal{I} \models \mathcal{T}$) iff \mathcal{I} satisfies every axiom A in \mathcal{T}
- \mathcal{I} satisfies an ABox \mathcal{A} ($\mathcal{I} \models \mathcal{A}$) iff \mathcal{I} satisfies every axiom A in \mathcal{A}
- \mathcal{I} satisfies a KB \mathcal{K} ($\mathcal{I} \models \mathcal{K}$) iff \mathcal{I} satisfies both \mathcal{T} and \mathcal{A}

DL vs. First-Order Logic

- in general, DLs correspond to decidable subclasses of firstorder logic (FOL)
- DL KB = first-order theory
- OWL Full is NOT a FOL fragment!
 - reasoning in OWL Full is undecidable
- OWL-DL and OWL-Lite are decidable fragments of FOL

DL vs. First-Order Logic

let $\mathcal{K} = \langle \mathcal{T}, \mathcal{A} \rangle$ be an ontology about persons where:

- *T* contains the following inclusion assertions: MALE □ PERSON FEMALE □ PERSON MALE □¬ FEMALE PERSON □∃Father¬.MALE
- *A* contains the following instance assertions:

MALE(Bob) PERSON (Mary) PERSON(Paul)

DL vs. First-Order Logic

• \mathcal{T} corresponds to the following FOL sentences: $\forall x. MALE(x) \rightarrow PERSON(x)$ $\forall x. FEMALE(x) \rightarrow PERSON(x)$ $\forall x. MALE(x) \rightarrow \neg FEMALE(x)$ \forall x. PERSON(x) $\rightarrow \exists$ y. Father(y,x) and MALE(y) \mathcal{A} corresponds to the following FOL ground atoms: MALE(Bob) **PERSON** (Mary) **PERSON(Paul)**

Inference tasks

- Knowledge is correct (captures intuitions)
 - C subsumes D w.r.t. \mathcal{K} iff for *every* model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$
- Knowledge is minimally redundant (no unintended synonyms)
 - C is equivalent to D w.r.t. \mathcal{K} iff for *every* model \mathcal{I} of \mathcal{K} , $C^{\mathcal{I}} = D^{\mathcal{I}}$
- Knowledge is meaningful (classes can have instances)
 - C is satisfiable w.r.t. \mathcal{K} iff there exists *some* model \mathcal{I} of \mathcal{K} s.t. $C^{\mathcal{I}} \neq \emptyset$
- Querying knowledge
 - x is an instance of C w.r.t. $\mathcal K$ iff for every model $\mathcal I$ of $\mathcal K,\,x^{\mathcal I}\in C^{\mathcal I}$
 - $\langle x,y \rangle \text{ is an instance of } R \text{ w.r.t. } \mathcal{K} \text{ iff for } \underbrace{\textit{every model } \mathcal{I} \text{ of } \mathcal{K}, (x^{\mathcal{I}},y^{\mathcal{I}}) \in R^{\mathcal{I}} \\$
- Knowledge base consistency
 - A KB \mathcal{K} is consistent iff there exists *some* model \mathcal{I} of \mathcal{K}

Inference tasks

- OWL-DL ontology = first-order logical theory
- verifying the formal properties of the ontology corresponds to reasoning over a first-order theory

Example: ontology consistency

Example TBox:

 $\begin{array}{l} \mathsf{MALE} \sqsubseteq \mathsf{PERSON} \\ \mathsf{FEMALE} \sqsubseteq \mathsf{PERSON} \\ \mathsf{MALE} \sqsubseteq \neg \mathsf{FEMALE} \\ \mathsf{PERSON} \sqsubseteq \exists \mathsf{hasFather}.\mathsf{MALE} \\ \mathsf{PERSON} \sqsubseteq \exists \mathsf{hasMother}.\mathsf{FEMALE} \\ \mathsf{hasMother} \sqsubseteq \mathsf{hasParent} \\ \mathsf{hasFather} \sqsubseteq \mathsf{hasParent} \\ \exists \mathsf{hasParent}.\mathsf{BLACK}.\mathsf{EYES} \sqsubseteq \mathsf{BLACK}.\mathsf{EYES} \\ \end{array}$

Example: ontology consistency

Example ABox:

MALE(Bob) MALE(Paul) FEMALE(Ann) hasFather(Ann,Paul) hasMother(Paul,Mary) BLACK-EYES(Paul) ¬BLACK-EYES(Ann)

 \Rightarrow TBox + ABox **inconsistent** (Ann should have black eyes)

Reasoning in OWL-DL

- reasoning in OWL-DL is decidable (and the complexity is characterized)
- however: high computational complexity (EXPTIME)
- (optimized) reasoning algorithms developed
- OWL-DL reasoning tools implemented

OWL vs. RDFS

- subclass-of
- property-def
- subproperty-of

RDF(S)

- domain
- range

class-expressions
 AND, OR, NOT

OWL

- role-constraints
 - has-value, value-type
 - cardinality
- role-properties
 - trans, symm...