Parte II

Struttura del Sistema di Elaborazione

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.1

Architettura a livelli

PROGRAMMI APPLICATIVI

AMBIENTI APPLICATIVI

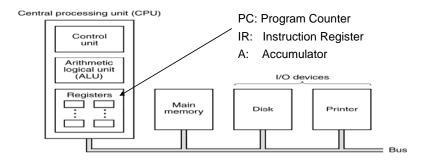
SISTEMA OPERATIVO

PIATTAFORMA HARDWARE

- I sistemi di elaborazione sono organizzati secondo una struttura a livelli
- Semplifica la progettazione decomponendo il problema
- Solo il livello più basso è realizzato in hardware
- Tutti i successivi strati sono software

Gerarchia di funzionalità

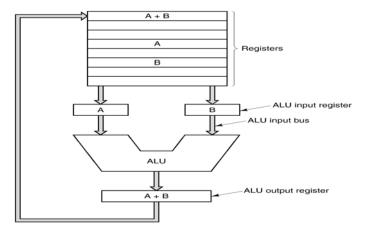
- Ciascun livello presenta verso il livello superiore un insieme di funzionalità
- Basandosi su queste il livello superiore realizza nuove funzionalità
- I livelli bassi sono più semplici da realizzare
- I livelli alti sono più semplici da utilizzare
- Il sistema, visto ad un qualsiasi livello si comporta come una macchina virtuale


ES

- La piattaforma hardware ha funzionalità molto limitate
- Il Sistema Operativo ha un'interfaccia potente e usabile

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.3


Struttura del computer

- La memoria contiene sia i dati che le istruzioni
- Il contenuto dei registri può essere scambiato con la memoria e l'I/O
- Le istruzioni trasferiscono i dati e manipolano il contenuto dei registri
- Registri particolari:
 - PC: indirizza l'istruzione corrente
 - IR: contiene l'istruzione corrente

11.4

Struttura della CPU

- Operazioni aritmetiche e logiche sui dati contenuti nei registri
- Spostamento di dati fra registri e fra registri e memoria23

Ciclo elementare: due operandi sono inviati alla ALU e il risultato è messo in un registro

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.5

Il ciclo Fetch-Decode-Execute

Passi dell'esecuzione di ciascuna istruzione nella CPU:

- **1.** Prendi l'istruzione in memoria all'indirizzo **PC** e mettila in **IR** (*Instruction Register*) (**Fetch**)
- 2. Incrementa PC (Program Counter)
- 3. Decodifica l'istruzione (Decode)
- 4. Se l'istruzione usa un dato in memoria calcolane l'indirizzo
- 5. Carica l'operando in un registro
- 6. Esegui l'istruzione (Execute)
- 7. Torna al passo 1. per l'esecuzione dell'istruzione successiva

Accessi a memoria sono effettuati <u>sempre</u> al passo 1, e non sempre ai passi 5 e 6

Esecuzione e Interpretazione

Esecuzione diretta

- Istruzioni eseguite direttamente dai circuiti hardware
- Approccio molto complesso:
 - Repertorio di istruzioni limitato
 - Progettazione dell'HW complessa
 - Esecuzione molto efficiente

<u>Interpretazione</u>

- L'hardware esegue solo operazioni elementari
- Istruzione scomposte in successioni di operazioni base eseguite dall'hardware
- Vantaggi:
 - Repertorio di istruzioni esteso
 - HW più compatto
 - Flessibilità di progetto

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.7

Microprogrammazione

- L'HW esegue microoperazioni:
 - Trasferimenti tra registri
 - Trasferimenti da e per la memoria
 - Operazioni della ALU su registri
- Istruzioni scomposte in sequenze di microoperazioni
- L'unità di controllo della CPU esegue un *microprogramma* per effettuare l'*interpretazione* delle istruzioni
- Il microprogramma è contenuto in una memoria ROM sul chip del processore
- Vantaggi:
 - Disegno strutturato
 - Semplice correggere errori
 - Facile aggiungere nuove istruzioni

CISC e RISC

- All'inizio degli anni '80 i progettisti di sistemi veloci riconsiderano l'approccio dell'esecuzione diretta
- Architetture **RISC** (*Reduced Instruction Set Computer*):
 - Repertorio ristretto (alcune decine di istruzioni)
 - Istruzioni prevalentemente su registri
 - Una istruzione eseguita per ogni ciclo di clock
- Architetture CISC (Complex Instruction Set Computer) :
 - Repertorio esteso (alcune centinaia)
 - Istruzioni anche su memoria
 - Molti cicli di clock per istruzione (μ-programmate)
- Esempi:
 - Alpha (DEC), Sparc (Sun), Itanium (Intel): RISC
 - Pentium II-IV (Intel): CISC

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.9

Obiettivi dell'approccio RISC

- Eseguire direttamente le istruzioni più frequenti
- <u>Massimizzare la frequenza</u> alla quale le istruzioni sono eseguite, misurata in MIPS (Millions of Instr. per Second)
- <u>Semplificare la decodifica</u> delle istruzioni: formati regolari
- <u>Limitare i riferimenti alla memoria</u> alle sole LOAD e STORE
- <u>Ampliare il numero di registri</u> per limitare l'uso di LOAD e STORE

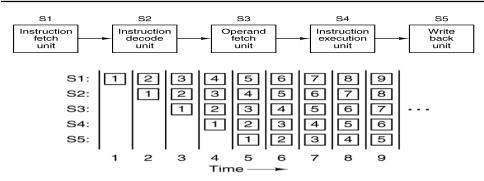
Parallelismo di esecuzione

• È ormai l'unica strada per aumentare le prestazioni

Limite di un'esecuzione sequenziale: la velocità della luce (30 cm in 1 ns)

A) Parallelismo a livello di istruzioni

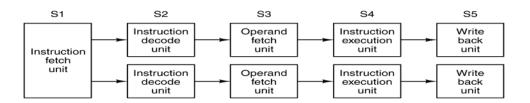
- Diverse istruzioni eseguite insieme
- Diverse fasi della stessa istruzione eseguite concorrentemente


B) Parallelismo a livello di processori

- Molti processori lavorano allo stesso problema
- Fattori di parallelismo molto elevati
- Interconnessione e di cooperazione più o meno stretta)

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.11


Pipelining

- Ciascuna istruzione è divisa in più fasi
- Esecuzione in pipeline (catena di montaggio) a più stadi
- Più istruzioni in esecuzione contemporanea
- Una istruzione completata per ogni ciclo

N.B. Si guadagna un fattore pari al numero di stadi della pipeline

Architetture Superscalari

- Si aumenta il parallelismo avendo più di una pipeline nel microprocessore
- Le pipeline possono essere specializzate:
 - Il Pentium ha due pipeline a 5 stadi
 - Una può eseguire solo istruzioni su interi

Problema: istruzioni eseguite in pipeline diverse devono essere indipendenti: ciascuna non può utilizzare i risultati dell'altra

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.13

Memoria Centrale

- Contiene sia i programmi che i dati
- Memorizzazione binaria (bit)
- Cella (o locazione): unità indirizzabile
 - byte: cella da 8 bit
 - word: insieme di k byte (k dipende dall'architettura)
- Indirizzo: tramite il quale la CPU accede al dato nella cella
- Indirizzi binari a m bit: spazio di indirizzamento 2^m celle

Pentium II-IV

- Architettura a 32 bit
- Registri e ALU a 32 bit
- Word di 4 byte (32 bit)
- Indirizzi a 32 bit
- Spazio indirizzabile 2³² = 4 GB

Codici a correzione di errore

- Recupero degli errori hardware tramite codifiche ridondanti
- Codifiche con **n= m+r** bit
 - n bit complessivi codifica
 - **m** bit dati
 - r check bit (ridondanti)
- Usate solo un sottoinsieme delle codifiche (codifiche valide)
- <u>Distanza di Hamming</u> **h**: minimo numero di bit diversi tra due codifiche valide
- Per rilevare d errori occorre h=d+1
- Per correggere d errori occorre h=2d+1

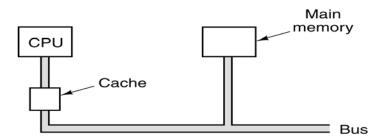
Calcolatori Elettronici I - prof. Giuseppe Santucci

II.15

Codici a correzione di errore: esempio

$$\begin{array}{c} \textbf{n=10, m=2, r=8} \\ \textbf{00000000000} \\ \textbf{0000011111} \\ \textbf{1111100000} \\ \textbf{111111111} \end{array} \hspace{0.2cm} \textbf{4=2}^{m} \text{ codifiche valide} \\ \textbf{1111111111} \end{array}$$

- Distanza di Hamming h=5 fra due qualsiasi codifiche valide
- Possibile correggere errori doppi 2d+1=h=5
- 1100011111 viene riconosciuto come 0000011111
- Possibile anche rilevare errori quadrupli d+1=h=5
- 11110111111 viene riconosciuto come errato


Controllo di parità

- È il caso più semplice di rilevazione di errore
- Si vogliono solo rilevare errori singoli
- Basta aggiungere un solo check bit r=1, n=m+1
- <u>Bit di parità</u>: scelto in modo che il numero complessivo di 1 nella codifica sia sempre pari (o dispari)
- Questo codice ha distanza h=2
- Errore rilevato da circuiti molto semplici
- Alcune memorie usano 8+1 bit per ogni byte
- Segnalano 'parity error' quando un errore si manifesta

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.17

Memorie Cache

La memoria è sempre più lenta della CPU e tende a rallentarla

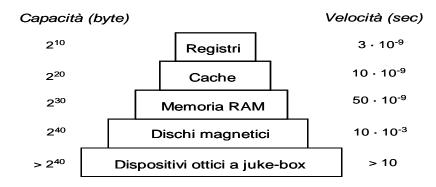
- Memorie veloci sono disponibili ma solo per piccole dimensioni
- La Cache (da cacher) funziona alla velocità del processore, e quindi nasconde la 'lentezza' della memoria
- Contiene le ultime porzioni di memoria acceduta: se la CPU vuole leggere una di esse evita un accesso a memoria
- Funziona bene sfruttando la località degli accessi

Cache Hit Ratio

- Se una parola viene letta k volte di seguito, k-1 volte sarà trovata in cache
- Cache hit ratio:

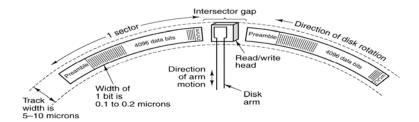
$$h=(k-1)/k$$

Tempo medio di accesso a memoria:


$$a=c+(1-h)m$$

- m: tempo di accesso della memoria
- c: tempo di accesso della cache
- La memoria è organizzata in blocchi
- Per ogni cache miss un intero blocco è spostato in cache, e usato in parecchi accessi successivi

Calcolatori Elettronici I - prof. Giuseppe Santucci


II.19

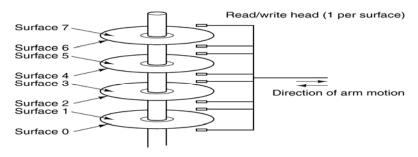
Gerarchie di memoria

- Scendendo nella gerarchia:
 - Cresce il tempo di accesso
 - Aumenta la capacità
 - Diminuisce il costo per bit
- Solo il livello più alto della gerarchia è a contatto con la CPU
- Migrazione dei dati fra livelli della gerarchia

Dischi magnetici

- Registrazione seriale su tracce concentriche
- 800-2000 tracce/cm (larghe ~10μ)
- Tracce divise in settori contenenti i dati, un preambolo e un ECC (Error-Correcting Code) (la capacità formattata scende del 15%)
- Velocità di rotazione costante (7200 RPM)
- Densità di registrazione variabile con il raggio (~ 10⁵ bit/cm)
- Velocità di trasferimento di 10-300 MB/sec

Calcolatori Elettronici I - prof. Giuseppe Santucci


II.21

Caratteristiche e prestazioni

Quattro parametri contraddistiguono le prestazioni di un disco:

- <u>Capacità</u>: cresciuta di un fattore di un fattore 10⁶ negli ultimi venticinque anni.
- ➤ <u>Tempo di accesso</u>: (tempo intercorrente tra l'avvio dell'operazione e l'inizio delle lettura/scrittura dei dati) diminuito solo di un fattore 10⁻¹ negli ultimi venti anni, legato a fattori meccanici e quindi incomprimibile.
- Velocità di trasferimento: dipende a sua volta da tre fattori:
 - Velocità di rotazione
 - Densità di registrazione
 - Banda del bus di interconnessione
- Affidabilità: misurata con lo MTBF (Mean Time Between Failures), gli ECC correggono gli errori di scrittura, ma restano i guasti meccanici

Dischi magnetici: tempo di accesso

- Cilindro: insieme di tracce sulla stessa verticale
- Tempo di seek t_{seek}: spostamento delle testine sul cilindro desiderato, dipende in parte dalla distanza (~ 5-10ms)
- Tempo di latency t_{lat}: spostamento sul settore, in media pari ad una semirotazione del disco (~ 5-10ms)
- Tempo di accesso:

$$t_{acc} = t_{seek} + t_{lat}$$

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.23

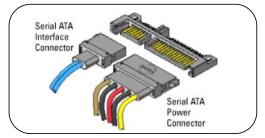
Dischi ATA

- Standard ATA Advanced Techology Attachement, anche conosciuto come IDE Integrated Drive Electronics (1989)
- Dischi a basso costo concepiti per i PC, ma richiedono un intervento consistente della cPU
- Utilizzano un controller presente nella mother board
- Bus parallelo, con connettore a 40 pin Diverse evoluzioni succesive: UltraATA, ATA-33/66
- Diverse modalità di trasferimento (Ultra-DMA)

UDMA Mode	MBs	Standard
Mode 0	16.7	ATA/ATAPI-4
Mode 1	25.0	ATA/ATAPI-4
Mode 2	33.3	ATA/ATAPI-4
Mode 3	44.4	ATA/ATAPI-5
Mode 5	100.0	ATA/ATAPI-5

Lo standard SCSI

- SCSI Small Computer Standard Interface
- Standard ANSI, emesso nel 1986
- I dispositivi sono gestiti da un Host Adapter (controller) connesso al bus di I/O del PC (bus PCI)
- Dispositivi connessi in daisy chain
- SCSI-1: data path a 8 bit, 5 MB/s
- Wide-SCSI (SCSI-2): data path a 16 bit (32 bit), 20 MB/s
- Ultra-SCSI: 80-320 MB/s
- Controller intelligente: minore carico sulla CPU
- Gestione di code di comandi (ottimizzazione degli accessi)
- Serially Attached SCSI (compatibile con Serial ATA)


Calcolatori Elettronici I - prof. Giuseppe Santucci

11.25

Lo standard Serial ATA

- Standard SATA, emesso nel febbraio 2003
- Si basa su una connessione seriale punto-punto
- Scalabilità: ciascun dispositivo ha la sua connessione privata
- Connettività hot-plug: inserimento a sistema avviato
- Sofisticati protocolli per la correzione di errori permettono di elevare la velocità
- MTBF di 1-2 milioni di ore (100-200 anni)

Evoluzione del Serial ATA - SCSI

	АТА	Serial ATA 1.0	Serial ATA II	Serial ATA III	SCSI
Speed (rpm)	5,400 - 7,200	5,400 - 10,000	5,400 - 10,000	5,400 - 10,000	10,000
Transfer rate (MB/sec.)	100	150	300	600	320
Status of standard Fina		Final	Due in mid- 2004	Due in mid- 2007	Final

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.27

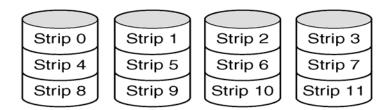
Classi di dischi

Characteristic	Mobile	Desktop	Enterprise		
rpm	3600, 4200, 5400 rpm	5400, 7200 rpm	10K, 15K rpm		
Seek time	Seek time 12 – 14 ms		3.2 – 7.4 ms		
Performance as file server*	N/A	79 – 136	146 - 366		
Write cache	2 MB	2 – 8 MB	2 – 8 MB		
Capacity	10 – 80 GB	40 – 250 GB	18, 36, 72, 144, 180 GB		
Reliability	300 K hr MTBF	500 K hr MTBF	1.2 M hr MTBF		
Power	2.5 W	10 W	15 W		
Cost	Cost \$73 – \$160		\$160 - \$1400		
Interfaces	ATA/66, ATA/100	ATA/100, ATA/133	Ultra 160 SCSI, Ultra 320 SCSI, FC		

Esempio: IBM/Hitachi Ultrastar 15K73

Configuration			
Capacity (GB) ¹	73.9	36.9	
Data heads (physical)	10	5	
Data disks	5	3	- 1050
Max. areal density (Gbits/sq. inch)	31	31	The same of
Max. recording density (BPI)	609,500	609,500	
Track density (TPI)	51,200	51,200	
Read method	ME ² PRML	ME ² PRML	
Performance			
Rotational speed (rpm)	15,037	15,037	
Latency average (ms)	1.99	1.99	
Data transfer rate (max. Mbits/sec)	960	960	
Sustained tranfer rate (max. MB/sec)	79	79	
Start time (sec)	25	25	
Seek time (read, typical)	2		
Average (ms) Track to track (ms)	3.9/4.2 (write) 0.4/0.5	3.9/4.2 (write 0.4/0.5	e)
Full track (ms)	7.2/8.0	7.2/8.0	

Calcolatori Elettronici I - prof. Giuseppe Santucci

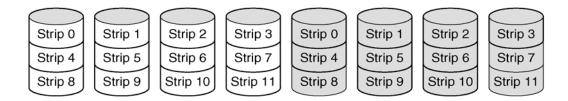

11.29

Dischi RAID

- <u>Problema</u>: miglioramento lento delle prestazioni dei dischi (1970: t_{seek}=50ms; 1999 t_{seek}=10ms)
- <u>Soluzione</u>: **RAID** (Redundant Array of Inexpensive Disks)
 - Dividere i dati su più dischi (striping)
 - Parallelizzare l'accesso
 - Aumentare la velocità di trasferimento (data rate)
 - Introdurre una resistenza ai guasti
- Contrapposti a **SLED** (Single Large Expensive Disk)

Data Striping: dati consecutivi nello stesso file vengono 'affettati' e disposti su dischi diversi, dai quali possono essere letti (e scritti) in parallelo

RAID Level 0



- Striping dei dati su **n** dischi: ciascun file viene 'affettato' in segmenti che vengono allocati su dischi diversi
- Con n dischi si può guadagnare un fattore n sia in lettura che in scrittura
- Il sistema si guasta più facilmente di un disco singolo
- Lo MTBF (Mean Time Between Failures) peggiora
- Non c'è ridondanza nella memorizzazione dei dati: non è un vero RAID

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.31

RAID Level 1

- Ciascun disco è duplicato e duplicato da un altro disco 'ombra': shadowing
- Ogni scrittura interessa sia un disco che al sua ombra
- Ottime prestazioni soprattutto in lettura: molte possibilità di bilanciare il carico
- Eccellente resistenza ai guasti
- Supportato anche da vari Sistemi Operativi(Es. Windows 2000 e Windows XP)

RAID Level 2

- Striping a livello di word o di byte
- <u>Esempio</u>: un *nibble* (mezzo byte) più 3 bit: codice di Hamming a 7 bit
- Registrazione ad 1 bit per ogni disco
- Rotazione dei dischi sincronizzata
- Resiste a guasti semplici
- Guadagna un fattore 4 in read e write
- Forte *overhead* cioè 'spreco' di spazio (nell'esempio + 75%)

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.33

RAID Level 2: pro e contro

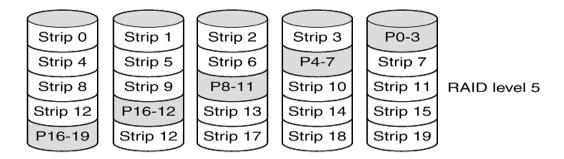
- Per ridurre l'overhead si aumenta il numero dei dischi
- Esempio striping a livello di word di 32 bit
 - -32 bit+(6+1) parità \Rightarrow 39 dischi
 - Overhead contenuto: circa + 19%
 - Guadagna un fattore 32 in read e write
- L'overhead è senz'altro igliore di RAID 1
- Il maggiore svantaggio di RAID level 2 è la necessità di avere dischi sincronizzati
- Altre configurazioni RAID (Level 1 e 5) sono più interessanti e più diffuse perché basate su dischi non sincronizzati

Raid Level 3


- Versione semplificata di RAID 2
- Resiste a guasti semplici! Il bit di parità, sapendo quale drive è rotto, consente la correzione
- L'overhead abbastanza contenuto

RAID 2 e 3 offrono un'eccellente data rate ma richiedono dischi sincronizzati e permettono di gestire solo una operazione su disco per volta perché ciascuna operazione coinvolge tutti i dischi

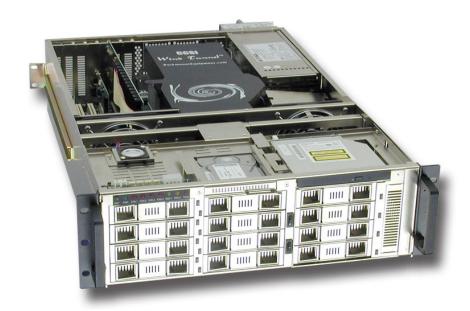
Calcolatori Elettronici I - prof. Giuseppe Santucci


11.35

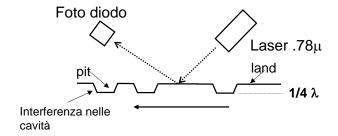
RAID Level 4

- Striping a livello di blocchi: drive non sincronizzati
- La *strip* nell'ultimo disco contiene i bit di parità dell'insieme di bit omologhi di tutte le altre *strip*
- Resiste a guasti singoli (vedi RAID 3)
- Se una sola *strip* è scritta occorre leggere tutte le altre per calcolare la parità
- Il disco di parità diventa un collo di bottiglia

RAID Level 5



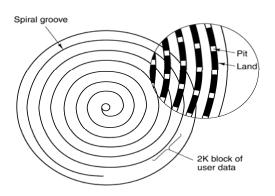
- Evoluzione di RAID 4
- Evita il collo di bottiglia del disco di parità
- Le strip di parità sono distribuite su tutti i dischi
- È al configurazione tipicadei dischi ad late prestazioni
- Dispositivi esterni con interfaccia SCSI


Calcolatori Elettronici I - prof. Giuseppe Santucci

II.37

Sistema RAID: esempio

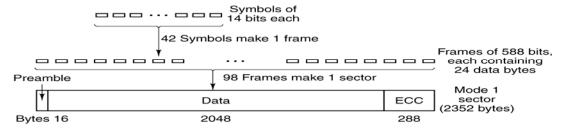
Dischi ottici: CD-ROM



- Inizialmente concepiti come dispositivi di sola lettura
- Registrazione basata sulla presenza di avvallamenti sulla traccia diregistrazione/lettura (pits e lands)
- Il laser emette luce polarizzata ed in fase
- L'interferenza nelle cavità diminuisce l'intensità luminosa letta dal fotodiodo
- Possibile la codifica binaria dell'informazione

Calcolatori Elettronici I - prof. Giuseppe Santucci

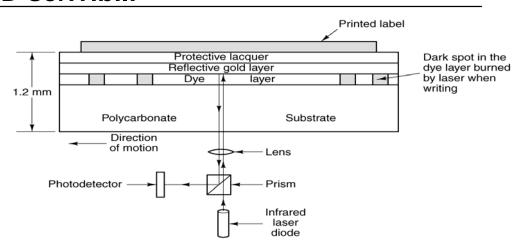
11.39


Dischi ottici: CD-ROM

- Standard originariamente introdotto per i CD audio
- Unica traccia a spirale ~22.000 giri a ~ 600/mm: lunghezza totale ~5.6Km
- Rotazione *variabile* 200-520 RPM concepita per avere un *flusso dati uniforme* (musica)

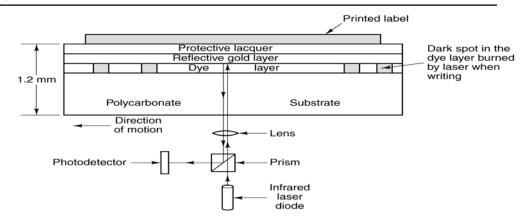
11.40

CD-ROM: organizzazione dei dati


- Codifica ridondante a tre livelli (simboli, frame, settori)
- Contiene in tutto 650 MB utili
- Drive 1x: 153 settori/sec ≈150KB/sec
- Drive 32 x: ~5MB/sec

N.B. Considerando i tre livelli di correzione di errore : la parte utile è solo il 28% del totale

Calcolatori Elettronici I - prof. Giuseppe Santucci

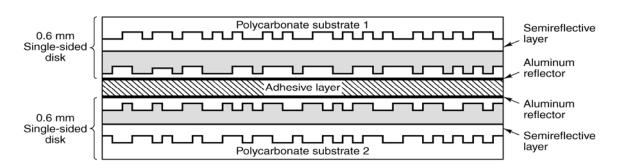

II.41

CD scrivibili

- Laser a due potenze :
 - alta (scrive): 'brucia' delle areole nello strato colorato
 - bassa (legge): come nei CD-ROM
- Solco pre-inciso per guidare il laser

CD riscrivibili

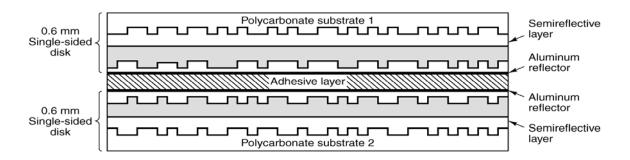
<u>Laser a tre potenze</u>:


(supporto a due stati: amorfo e cristallino)

- alta (scrive): cristallino→ amorfo
- media (cancella): amorfo → cristallino
- bassa (legge): come nei CD-ROM

Calcolatori Elettronici I - prof. Giuseppe Santucci

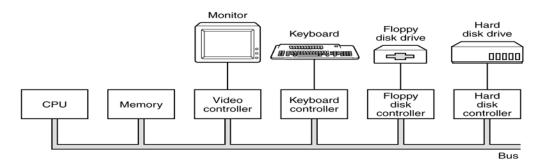
11.43


DVD: Digital Versatile Disk

- Evoluzione del CD ROM
- Aumento della capacità:
 - Laser λ =0.65 μ → pit 0.4 μ (erano 0.8 μ)
 - Spirale più stretta 0.74μ (erano 1.6μ)
 - Capacità: 4.7 GB
 - <u>Data rate (1x)</u>: 1.4MB/sec

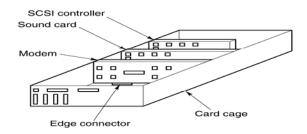
11.44

DVD: evoluzione



- Nella versione base un DVD basta per 133 minuti di film a 720×480, compresso con MPEG-2
- Ulteriore aumento di capacità:
 - Singola faccia, layer doppio: 8.5 GB
 - Doppia faccia, layer singolo: 9.4 GB
 - Doppia faccia, layer doppio: 17 GB

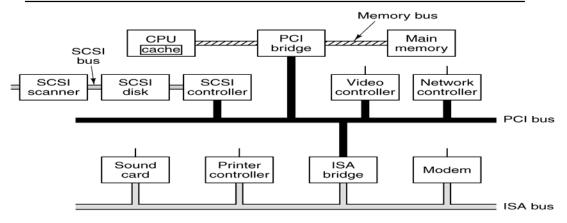
Calcolatori Elettronici I - prof. Giuseppe Santucci


11.45

Dispositivi di I/O

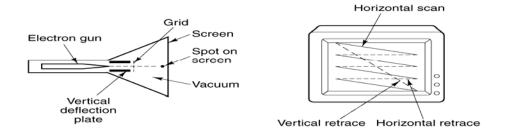
- I dispositivi di I/O sono connessi al bus tramite controller
- I controller gestiscono autonomamente i trasferimenti da e per la memoria: DMA (Direct Memory Access)
- Possono comunicare con la CPU tramite le interruzioni
- Il bus è condiviso da CPU e controller, e gli accessi sono regolati da un arbitro

Struttura fisica del PC



- La base della struttura è costituita dalla Scheda Madre (Mother Board)
- Sulla scheda madre sono la CPU, il *Chipset,* il bus e vari connettori per la memoria e i dispositivi di I/O
- Il bus è costituito da una serie di piste sul circuito stampato
- Spesso sono presenti più bus, secondo diversi standard
- Le carte di I/O vengono inserite nei connettori

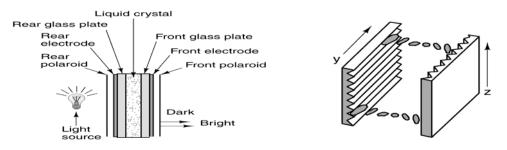
Calcolatori Elettronici I - prof. Giuseppe Santucci


11.47

Bus ISA e PCI

- ISA (Industry Standard Architecture) nasce col PC AT IBM (~'82)
- PCI (Peripheral Component Interconnect) introdotto da Intel (~'90)
- Il bus PCI ha più linee e una maggiore frequenza di funzionamento (66MHz)
- Sia ISA che PCI sono di pubblico dominio

Monitors CRT



- Sono gli stessi usati nei televisori ma con prestazioni migliori:
 - Dot Pitch: dimensione dei pixel (tipica 0.28-0.21mm)
 - Risoluzione: numero di pixel (Es. 1280×1024 per 17")
 - Refresh rate: frequenza con cui i quadri sono riprodotti (Es. 85 Hz)

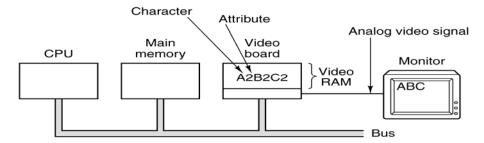
Calcolatori Elettronici I - prof. Giuseppe Santucci

11.49

Display Flat Panel

- Basati sulla conduzione di luce polarizzata nei cristalli liquidi (LCD)
- Conduzione influenzata da campi elettrici generati da elettrodi trasparenti

Display a Matrice Attiva


- Elementi luminosi (pixel) controllati da una matrice di selezione
- Molto migliori ma più costosi

Display a colori:

Stessi principi, ma più strati e filtri

11.50

Terminali a mappa di caratteri

- Presentano sullo schermo solo caratteri
- Tipicamente 25 righe da 80 caratteri, contenuti nella VRAM
- Dimensioni limitate della VRAM: tipico 25×80×2 ≈4k (2 byte per carattere)
- Flusso limitato tra memoria e VRAM
- Non possono gestire alcun tipo di grafica
- Ormai quasi estinti

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.51

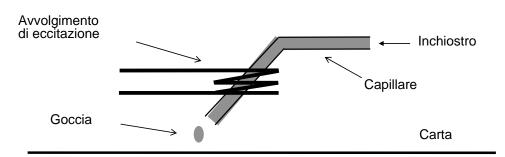
Terminali a mappa di bit

- L'immagine è costituita da una matrice di punti (pixel)
- Da 1 a 4 byte per pixel (1 byte 256 colori,..., 3 byte 2²⁴ colori)
- Interfacce grafiche, a finestre
- <u>Problema</u>: dimensione della VRAM
 - Risoluzione 1280×960
 - 24 bit per pixel (true color)
 - Servono 4 MB di VRAM
- Problema: gestione dell'immagine
 - Flusso tra RAM e VRAM
 - Carico addizionale per la CPU
- Soluzioni:
 - Potenziamento del bus (PCI)
 - Schede grafiche con capacità di elaborazione dell'immagine

Tastiere e mouse

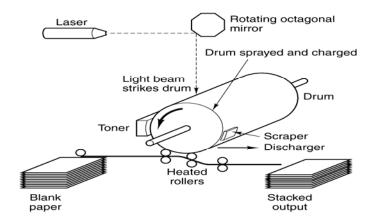
Tastiere

- Codice del carattere inviato ogni volta che si pigia o rilascia un tasto
- Genera una interruzione della CPU
- Combinazioni di tasti gestite SW
- Mapping dei tasti (tastiere nazionali) gestito in software


<u>Mouse</u>

- Tecnologie meccanica e ottica
- 3 byte inviati ogni volta che il mouse fa un certo spostamento minimo:
 - 1 Spostamento sull'asse x
 - 2 Spostamento sull'asse y
 - 3 Posizione dei bottoni

Calcolatori Elettronici I - prof. Giuseppe Santucci


11.53

Stampanti Inkjet

- Stampanti grafiche: 300-1440 dot/inch
- Caratteri trattati come immagine
- Emissione di gocce di inchiostro per impulsi elettrici (calore/evaporazione o contrazione piezoelettrica)
- Teste a più ugelli, si postano sulla carta
- Poco costose e silenziose, ma lente
- Generazione dell'immagine, da parte del computer

Stampanti Laser

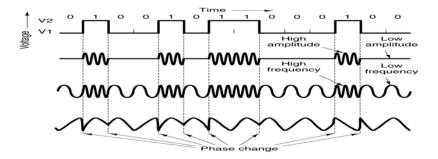
- Eccitazione elettrostatica del tamburo di selenio con pennello laser
- Adesione del toner (polvere plastica)
- Trasferimento del toner sulla carta a caldo e sua fusione (fissaggio)

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.55

Stampanti a Colori

- CYMK (Cyan, Yellow, Magenta, BlacK): codice di stampa a 4 colori
- RGB (Red, Green, Blue): codice a 3 colori monitor necessaria conversione

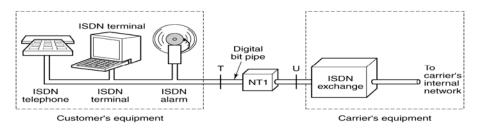

<u>Inkjet</u>

- Come B/N, con più teste di stampa
- Molto diffuse e poco costose

<u>Laser</u>

- Costose, ottima qualità e costi marginali contenuti
- Usano 4 toner di colori diversi
- Richiedono molta memoria

Modem



- Informazione binaria trasmessa su linee analogiche modulando una portante
- Modulazione di ampiezza, frequenza e fase
- Bit rate: frequenza di invio dei bit
- <u>Baud rate</u>: frequenza con cui varia il segnale
- Bit rate tipiche: 14.000~57.600 bits/sec
- Protocolli V.32 bis V.34 bis

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.57

Linee ISDN e poi ADSL

- Linea digitale che usa un normale doppino telefonico
- Due canali indipendenti a 64.000 bit/sec ciascuno più uno di segnalazione a 16.000
- Ciascuna delle linee può essere anche convertita in analogica
- Molto più affidabile, consente connessioni a 64 e 128 Kbits/sec, non richiede modem
- Anche linee ISDN a 30 canali

11.58

Codice ASCII (Hex 0-1F)

Hex	Name	Meaning	Hex	Name	Meaning
0	NUL	Null	10	DLE	Data Link Escape
1	SOH	Start Of Heading	11	DC1	Device Control 1
2	STX	Start Of Text	12	DC2	Device Control 2
3	ETX	End Of Text	13	DC3	Device Control 3
4	EOT	End Of Transmission	14	DC4	Device Control 4
5	ENQ	Enquiry	15	NAK	Negative Acknowledgement
6	ACK	ACknowledgement	16	SYN	SYNchronous idle
7	BEL	BELI	17	ETB	End of Transmission Block
8	BS	BackSpace	18	CAN	CANcel
9	HT	Horizontal Tab	19	EM	End of Medium
Α	LF	Line Feed	1A	SUB	SUBstitute
В	VT	Vertical Tab	1B	ESC	ESCape
С	FF	Form Feed	1C	FS	File Separator
D	CR	Carriage Return	1D	GS	Group Separator
E	SO	Shift Out	1E	RS	Record Separator
F	SI	Shift In	1F	US	Unit Separator

Calcolatori Elettronici I - prof. Giuseppe Santucci

11.59

Codice ASCII (Hex 20-7F)

Нех	Char	Hex	Char								
20	sp	30	0	40	©	50	P	60		70	р
21	!	31	1	41	Α	51	0	61	а	71	q
22	33	32	2	42	В	52	R	62	b	72	r
23	#	33	3	43	С	53	5	63	С	73	5
24	\$	34	4	44	D	54	Т	64	d	74	t
25	%	35	5	45	Е	55	U	65	е	75	u
26	&	36	6	46	F	56	V	66	f	76	V
27	,	37	7	47	G	57	W	67	g	77	W
28	(38	8	48	Н	58	Х	68	h	78	Х
29)	39	9	49	1	59	Υ	69	i	79	у
2A	*	3A	:	4A	J	5A	Z	6A	j	7A	Z
2B	+	3B	;	4B	K	SB	[6B	k	7B	{
2C	,	3C	<	4C	L	SC	\	6C	1	7C	
2D	-	3D	=	4D	М	SD]	6D	m	7D	}
2E		3E	>	4E	N	SE	٨	6E	n	7E	~
2F	1	3F	?	4F	0	SF		6F	0	7F	DEL

11.60

Codice UNICODE

- Codice ASCII a 7 bit
- Escape sequences: per caratteri speciali
- Successivamente esteso a 8 bit raddoppiando le codifiche
- Diversi codici nazionali (code pages)
- Impossibile usarli simultaneamente
- Problemi di portabilità e compatibilità del software
- Esempi: caratteri strani nelle e-mail e su Internet
- Codice UNICODE a 16 bit, nuovo standard:
 - 65.536 code point
 - Semplifica la scrittura del software

Calcolatori Elettronici I - prof. Giuseppe Santucci

II.61

UNICODE: assegnazione delle codifiche

- Complessivamente 65.536 code point
- Gli alfabeti latini richiedono complessivamente 336 code point:
- Ulteriori 112 code point necessari per accenti e simboli diacritici
- Tutto ok per gli altri alfabeti *fonetici*: greco, cirillico, ebraico, ecc.
- Problemi molto seri per gli alfabeti non fonetici:
 - 21.000 ideogrammi cinesi
 - 11.000 sillabe coreane