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Lighting

and

Shading
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Introduction

■ Generation of realistic images given
description of 3D scene...

❏ object shape

❏ object location and orientation

❏ surface properties

❏ light sources

■ ...and viewing information

❏ find out which points are visible

❏ find out how these points are lit

■ Here, we are only concerned with the
second of these problems
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Introduction

Having chosen a view of our scene,
need to establish how the visible points

are illuminated

■ Each point has two sources of illumination

❏ direct illumination
- light which arrives straight from the light
sources

❏ indirect illumination
- light which arrives after interacting with
the rest of the scene

■ Can group algorithms according to how
they handle these two components

❏ global illumination algorithms
- care is taken to evaluate both

❏ local illumination algorithms
- only direct light is accounted for
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Introduction

Typically, when generating realistic
images, one of two approaches is

adopted

■ Empirically-based rendering

❏ image is found using enough
fudge-factors to ensure an accurate
image

■ Physically-based rendering

❏ image is found by modelling the
processes which determine how light is
transported around a real scene

■ Physically-based algorithms are more
computationally expensive, but give better
realism
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Introduction

We can further classify rendering
algorithms

■ Image-space algorithms

❏ first find out visible points and then how
these points are illuminated

❏ e.g. ray-tracing

■ Object-space algorithms

❏ first find out how the whole scene is
illumination and then which points are
visible

❏ e.g. radiosity
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Introduction

This course will cover the following
topics

■ Local illumination modelling

❏ points light sources

❏ ambient lighting

❏ diffuse and specular reflection

■ Shading

❏ flat, Gouraud and Phong

■ Texture mapping and transparency

❏ pattern mapping

❏ bump mapping

❏ environment mapping
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Introduction

■ Ray-tracing

❏ image-space algorithm

❏ sharp shadows

❏ object intersections

❏ acceleration techniques

❏ image aliasing

■ Radiosity

❏ object-space algorithm

❏ form-factors

❏ hemi-cube

❏ progressive refinement
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Local

Illumination

Models
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Types of Reflection

There are two ways in which reflection
can occur

■ Diffuse reflection

❏ light is scattered uniformly, making the
surface look matte
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Types of Reflection

■ Specular reflection

❏ a large proportion of the incident light is
reflected over a narrow range of
angles, making the surface look shiny

■ Combined reflection

❏ in practice, many materials exhibit both
of these effects to different degrees
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Surface Orientation

■ N is surface normal and

■ L is direction to light source

■ Vectors N and L are unit vectors

■ θ is angle of incidence

Normal vector
N

To light source

L

θ
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Illumination Model 1

We only consider illumination from
ambient lighting

■ Ambient lighting

❏ uniform illumination from all directions

❏ arises from multiple reflections

❏ Ia = intensity of ambient light

❏ I = kdIa

■ Diffuse reflection coefficient, kd

❏ measures reflectivity of surface for
diffuse light

❏ values in the range 0 - 1
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Illumination Model 1

There is a problem...

■ Lose 3D information because an object is
illuminated uniformly

■ An example

■ Therefore, need to consider reflection of
light from a localised source
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Lambert’s Cosine Law

■ Amount of light received from light source
depends on orientation of surface

❏ light intensity Ip of area A

❏ light spread over area A'

❏ A' = A/cosθ and A = A'cosθ, so...

❏ effective intensity Ie at surface is

A'

A

L

N

θ

Ie Ip θcos=
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Diffuse Reflection

We can calculate intensity of diffusely
reflected light as

■

■ But  since N and L are unit
vectors

■ Amount of light diffusely reflected is

I kdIp θcos=

θcos N L•=

I kdIp N L•( )=
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Illumination Model 2

We consider illumination from ambient
and a point light source

■ I = ambient + diffuse

■ I kdIa kd+ Ip N L•( )=
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Specular Reflection

 Not all surfaces exhibit diffuse
reflection

■ Surfaces that only show diffuse reflection
are dull and matte

■ In reality, many surfaces are shiny

❏ at certain viewing angles, shiny surfaces
produce specular highlights

❏ highlights occur over a narrow range of
angles

❏ colour of highlight usually same as the
illuminating light

■ Mirrors are examples of ideal specular
reflection

❏ angle of incidence equals angle of
reflection
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More Notation!

■ N is surface normal

■ L is direction to light source

■ V is direction towards view point

■ R is direction of ideal specular reflection

■ The intensity of specular reflection depends
on the angle φ such that Is ∝ f(φ)

N

LR

V

θφ
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Phong Model

Phong’s empirical model provides a
simple way of controlling the size of the

specular highlight

■ f(φ) = cosnφ

■ n depends on surface properties

❏ for perfect reflectorn = ∞

❏ for very poor reflectorn = 1

❏ in practice use 1 ≤ n ≤ 200

0
φ

1.0

π/2−π/2

n = 1

n = 5

n = 50
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Phong Model

We can evaluate the cosine term
solely in terms of vectors

■ With R and L normalised

■ Hence

■ Specular reflection also depends onθ, so
that

❏ in practice, we set W(θ) = ks

❏ ks is the coefficient of specular reflection

❏ ks has values in the range 0 - 1

φcos R V•=

Is R V•( )n∝

Is W θ( ) R V•( )n∝
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Illumination Model 3

Reflection from a surface with diffuse
and specular properties

■ I = ambient + diffuse + specular

■

■ Examples

I kdIa Ip kd N L•( ) ks R V•( )n++=
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Light Source Distance

The intensity of light from a point light
source depends on how far away it is

■ Physically, intensity falls off as the square of
the distance

❏ the effective intensity of a light source Ip
after travelling a distance d is

❏ in practice, this does not works very well

■ Instead, experiment shows that a better for-
mula is

Ie
Ip

4πd
2

--------------=

Ie
Ip

d d0+
-----------------=
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Illumination Model 4

 Reflection from a surface when the
attenuation of light is included

■ I = ambient + dist-factor(diffuse + specular)

❏ this represents a linear fall-off of intensity

❏ d0 is a constant, used to prevent infinite
intensity when d = 0

■ Multiple light sources

❏ use linear superposition

I kdIa
Ip

d d0+
----------------- kd N L•( ) ks R V•( )n++=

I ambient diffusei
i 1=

n

∑ speculari
i 1=

n

∑+ +=
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Colour

So far our models make no mention of
colour, only light intensities

■ Choose a colour model and apply the
illumination model to each colour
component

❏ simple colour model is monitor RGB
- surface defined bykdR, kdG and kdB
- similarly for the light source

❏ an example for the Red component

❏ assumes specular highlight is the same
colour as the light source

■ More sophisticated, spectrally-based
colour models are available

IR kdRIaR

IpR
d d0+
----------------- kdR N L•( ) ks R V•( )n++=
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Applying

the

Illumination

Model
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Polygon Shading

Typically, objects are represented by
meshes of polygons

■ Our illumination model computes the
intensity at a single point on a surface

■ How can we compute the intensity across
the polygon?

❏ compute the shade at the centre and
use this to represent the whole polygon
- flat shading

❏ compute the shade at all points
- unnecessary and impractical

❏ compute shade at key points and
interpolate for the rest
- Gouraud and Phong shading
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Flat Shading

This shading method is the simplest and
most computationally efficient

■ Not realistic

❏ polygon structure is still evident
- faceted appearance

❏ but we can refine the structure to
reduce the visual effect

■ Problem with Mach banding

❏ the human visual system is extremely
good at detecting edges - even when
they are not there!

❏ abrupt changes in the shading of two
adjacent polygons are perceived to be
even greater

■ We need to smooth out these changes
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Intensity Interpolation

This smooth shading method is also
known as Gouraud shading

■ Given a polygon and a scan-line, the
problem is to determine the intensity at an
interior point, such as P

❏ for this we need the intensity values at
the vertices A, B and C

A

C

Q

RP

B
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Intensity Interpolation

■ First compute the intensity values at each
polygon vertex

❏ need vertex normals

❏ compute vertex normal approximately
by averaging the surface normals of
surrounding polygons

N'
N1

N2

N3

N4
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Intensity Interpolation

■ Next compute the intensities at points Q
and R where the scan-line and polygon
intersect

❏ use linear interpolation

■ Finally, linearly interpolate between IQ and
IR to get intensity at point P

■ This method avoids shading discontinuity for
adjacent polygons

IQ uIB 1 u–( ) IA and u+ AQ
AB
----------= =

IR wIB 1 w–( ) IC and w+ CR
CB
--------= =

IP vIR 1 v–( ) IQ and v+ QP
QR
---------= =
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Intensity Interpolation

Problems with Gouraud shading

■ Smooths out real edges

❏ compute two vertex normals, one for
each side of the boundary

■ May lose specular reflection if the highlight
lies inside a single polygon

■ Regular corrugated surfaces will appear to
be shaded uniformly

Surface normals

Vertex normals
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Normal Vector
Interpolation

This smooth shading technique is also
known as Phong shading

■ Similar to intensity interpolation, except we
linearly interpolate the surface normal
vector across the polygon

❏ for the example situation described
before we have

■ Now apply illumination model with
interpolated normal to find intensity at
required point

NQ uNB 1 u–( ) NA+=

NR wNB 1 w–( ) NC+=

NP vNR 1 v–( ) NQ+=
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Normal Vector
Interpolation

Pros and cons

■ More realistic shading than intensity
interpolation

❏ specular highlights are preserved

❏ Mach banding greatly reduced

■ More computationally expensive

❏ each interpolation requires complete
shading calculation
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Texture

and

Transparency

Copyright  University of Manchester 1995 Lighting and Shading: 35

Texture

We now wish to model surfaces which
are not smooth or simply coloured.

There are two kinds of surface texture

■ Patterns or colour detail

❏ we superimpose a pattern on a smooth
surface but the surface remains smooth

❏ also known as texture mapping

■ Roughness

❏ we alter the uniformity of the surface
using a perturbation function that
effectively changes the geometry of
the surface

❏ for example, bump mapping

❏ but also, microfacet modelling
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Texture Mapping

Object space mapping

■ We map an image onto the surface of an
object

❏ pattern space specified using (u, v)

❏ object space by (θ, φ)

❏ need to determine the mapping func-
tion defined by

■ Hence, given a particular (θ, φ)

❏ compute the corresponding (u, v)

❏ shade the surface with the colour
pointed to in the image by (u, v)

u f θ φ,( )= v g θ φ,( )=
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Texture Mapping

Mapping function for a sphere

uv
Te

Tp
N

1.0

1.00.0 u

v
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Texture Mapping

There are other ways of mapping
patterns

■ Parametric space mapping

❏ used when surface is defined
parametrically (s, t)

❏ similar to object space mapping

❏ map (θ, φ) to (s, t)

■ Environment mapping

❏ used to simulate mirror-like reflections of
the scene surrounding object
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Bump Mapping

This method models features due to
large-scale surface roughness

■ Alters the uniformity of a surface using a
perturbation function

❏ for example, use a function which
perturbs the normal vector

❏ use new normal in illumination model

■ Perturbation function can be defined

❏ analytically

❏ as a lookup table

■ Different effects can be achieved

❏ random function gives rough surface

❏ a smoother function gives more regular
feature
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Bump Mapping

■ An example of bump mapping
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Bump Mapping

■ This technique avoids explicitly modelling
the geometry of the new surface

❏ the silhouette is still smooth

❏ roughening only becomes apparent
when the shading model is applied

■ Examples of use

❏ texture of an orange

❏ tread of tyre

❏ etc
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Cook-Torrance Model

This method models features due to
small-scale roughness

■ Surface modelled as collection of
randomly oriented microscopic facets

To viewer

a

b c d e

f
N

Actual surface
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Cook-Torrance Model

■ Model accounts for three situations

❏ facets which reflect light directly
towards the viewer

❏ facets which are in shadow of other
facets

❏ facets which reflect light which itself has
been reflected from other facets
- these multiple reflections contribute to
the diffuse reflection from the surface

■ Specular reflection coefficient of the over-
all surface given by

❏ D is distribution function (Gaussian)

❏ G is factor accounting for shadowing

❏ F is the Fresnel factor

ks
DGF

π N V•( ) N L•( )
--------------------------------------------=
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Cook-Torrance Model

■ The Fresnel factor gives the fraction of light
incident on a facet which is reflected rather
than absorbed.

❏ defined by

❏ θ and φ are the angles of incidence and
reflection measured from the facet nor-
mal not the overall surface normal N

■ Cook-Torrance model gives results similar to
Phong’s except

❏ for grazing angles of reflection

❏ the highlight colour is not the same as
light source

❏ Phong is computationally less expensive

F 1
2
--- φ θ–( )2sin

φ θ+( )2sin
------------------------------ φ θ–( )2tan

φ θ+( )2tan
--------------------------------+=
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Transparency

Not all materials are opaque. Some
objects allow light to be transmitted or

refracted

■ Diffuse refraction

❏ transmitted light is scattered by internal
and surface irregularities

❏ surface appears translucent (frosted
glass)

❏ objects view through a diffuse refractor
appear blurred

■ Specular refraction

❏ occurs in truly transparent materials

❏ the direction of light rays are bent (lens)

❏ objects viewed through a specular
refractor are clearly seen
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Transparency

Snell’s Law

■ Describes precisely how light behaves
when moving from one medium to another

❏ η is the refractive index of the material

❏ θ is angle of ray measured from normal

η1 θ1sin η2 θ2sin=

Incident ray Reflected ray

Transmitted ray

Normal

Surfaceη1

η2

θ1

θ2
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Transparency

Refractive index

■ The refractive index is in general
wavelength dependent

❏ different colours will be bent by different
amounts

❏ this is called dispersion

❏ we will ignore this effect since it is
difficult to model and use an average
value across the visible spectrum

■ Snell’s law is significant

❏ example, light passing from air into
heavy glass (η = 1.5) at θ = 30°, will be
bent by 11°°
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Modelling Transparency

Non-refractive transparency

■ Light paths are not bent

❏ avoids computational overhead with
trigonometric functions in Snell’s law

■ Then transparent objects will appear
invisible!

■ Introduce a transmission coefficient t, to
measure transparency

❏ opaque object has t = 1

❏ perfectly transparent object has t = 0

❏ t could be colour dependent (coloured
glass, for example)
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Modelling Transparency

Non-refractive transparency

■ Example use

■ The observed intensity is given by

(y-axis out of page)
x

z

b

f

pb

pf

I tIf 1 t–( ) Ib+=
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Global

Illumination

Models
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Ray Tracing

This method simulates the global
illumination distributed by specular

light

■ Uses the laws of geometric optics

❏ follows light energy along rays

❏ is a recursive procedure

❏ is view dependent

■ Includes an element to simulate diffuse
effects

❏ diffuse reflection from local illumination

❏ otherwise surface will be black ‘n’ shiny

■ Ray-tracing can be used on different kinds
of surfaces, not just polygons

❏ for example, spheres and cones
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Ray Tracing

Overview of the procedure

■ Rays are traced from the view-point

❏ need to set-up viewing system

❏ view-plane is discretized and mapped
to image pixels

❏ one primary-ray is traced through each
pixel out into the scene

■ Find intersection of primary-ray with object
which is nearest view-point

❏ object thus found represents surface
visible through pixel

■ At this point we have effectively performed
a hidden-surface removal operation
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Ray Tracing

Now determine the intensity of light
leaving the surface intersection point

■ This intensity will be due to a local
component plus components due to
globally reflected and transmitted light

L

R

N

V

-N

T

Is I

It

η1

η2

θ1

θ2
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Ray Tracing

■ For a single point light source

❏ kr is the global specular reflection
coefficient (usually equal to ks)

❏ kt is the global specular transmission
coefficient

❏ Ir and It are the intensities coming from
directions R and T

■ The global terms are calculated by
spawning secondary-rays from intersection
point in directions R and T

❏ find intersection of secondary-rays with
objects in the scene

❏ apply intensity calculations again at
new intersections

I kdIa Ip kd N L•( ) ks R V•( )n+ krIr ktIt+ + +=
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Ray Tracing

Recursive nature of ray-tracing

■ We can repeat this process again and
again

❏ create new secondary-rays at each
intersection point

❏ use new rays to estimate Ir and It for
each previous trace

■ If kr is zero, no global reflection occurs,
surface is diffuse, so no need to spawn new
specular rays

■ Similarly for kt, opaque surfaces have zero
transmittance
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Ray Tracing

Ray-tracing a particular pixel

■ An schematic example

❏ all surfaces are transparent except S4

❏ rays T1, R2, R3, R4 do not contribute to
intensity at pixel

T1

T2

T3

R

R1

R2

R3

R4

S1 S2

S3

S4

Pixel

Eyepoint

Viewing screen

Reflected ray

Transmitted ray

p
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Ray Tracing

Intensity calculations at each point of
intersection must take into account

shadows

■ First construct the shadow ray

❏ origin at intersection point and direction
towards the light source

■ Test shadow ray against objects in scene

❏ if hit is found and intersection is nearer
than the light source, then point is in
shadow

❏ shadowed point does not contribute
local illumination, except ambient

■ Multiple light sources

❏ shadow ray for each source
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Ray Tracing

We can visualise the recursive process
used in ray-tracing with a ray-tree

S1

S2

S3

S4

Eye ray

Shadow ray(s)

T1

T2

T3

R1

R2

R3

R4

Shadow ray(s)

Shadow ray(s)

Shadow ray(s)
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Ray Tracing

The ray-tree

■ In practice, need to set-up maximum
depth to which rays are traced

❏ otherwise spend too much time on rays
which contribute little to image

❏ but if we have insufficient depth, will
cause artifacts

■ Three ways to control ray-tree depth

❏ rays may leave scene
- return 'background' intensity

❏ set absolute ray-tree depth

❏ use adaptive depth control
- set threshold intensity returned by
secondary-rays
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Object Intersections

A major part of the ray-tracing
algorithm is concerned with finding

intersections with objects in the scene

■ Each newly created ray must be tested
against every object surface

❏ if intersections are found, which one is
the nearest?

■ Need efficient intersection algorithms for all
types of object

❏ sphere, polygon, cone, box, cylinder,
torus, etc

❏ will illustrate how to calculate intersec-
tions with a sphere
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Sphere Intersection

Vector equation of a ray

■ Arbitrary ray definedparametrically as

❏ r is position vector of point with
parameter t

❏ O is position vector of ray origin

❏ D is unit vector in ray direction

■ Parameter t is real-valued

❏ represents a 'distance' along ray

❏ for all primary rays the origin lies at the
view point

■ We require values of t at intersection points
which are positive

r O Dt+=

Copyright  University of Manchester 1995 Lighting and Shading: 62

Sphere Intersection

■ Vector equation of a sphere

❏ C is position vector of sphere centre

❏ R is the sphere’s radius

■ Substitute ray equation and solve for the
parameter t, giving

■ This is a quadratic in t, so

r C–( ) r C–( )• R 2=

t
2

2tµ– λ R
2

–+ 0=

µ D T•=

λ T T•=

T C O–=

t µ γ±=

γ µ 2 λ– R 2+=

Copyright  University of Manchester 1995 Lighting and Shading: 63

Sphere Intersection

■ Depending on the value of γ, we have one
of three situations

❏ γ < 0 ray misses sphere

❏ γ = 0 one intersection which grazes
sphere

❏ γ > 0 two distinct intersections

■ To find intersection points

❏ substitute the t values back into the
ray-equation

t1 µ γ+=

t2 µ γ–=
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Optimisations

Naive ray-tracing can be very time
consuming

■ Typically 90% of computation time spent on
object intersections

❏ gets worse the greater number of
objects in the scene

❏ also get worse if we want higher
resolution image (more primary-rays)

❏ this slows the ray tracing method
considerably

■ Schemes are available to help which

❏ limit the number of intersection tests

❏ delay a costly test until a cheaper test
has confirmed its necessity
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Hierarchical Bounding
Volumes

What is a bounding volume?

■ Is a simple primitive which has smallest
volume enclosing object

❏ usually spheres and axis-aligned boxes

■ During ray intersection test

❏ first test the bounding volume
- usually easier and faster

❏ if bounding volume intersected then
test the actual object

■ Spheres are very popular

❏ very efficient since we only need to
know if intersection takes place, NOT
where the intersection points are
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Hierarchical Bounding
Volumes

Hierarchical scheme?

■ Clusters of bounding volumes within larger
bounding volume

❏ intersect ray with outer volume

❏ then with inner volumes if necessary

■ Can have any number of levels of
bounding volumes

■ Hierarchical scheme efficient for scenes
with non-uniform distribution of objects

❏ ray doesn’t do much work in ar eas
which it is not 'looking' at

■ Very good speed-up in rendering time
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3D Spatial Subdivision

More powerful partitioning schemes
use the idea of voxels

■ Voxels are axis-aligned rectangular prisms
which are like bounding volumes except...

❏ fill all of space occupied by scene

❏ are non-overlapping

❏ do not necessarily completely enclose
any particular object

■ Two varieties of spatial subdivision

❏ uniform
- all voxels are the same size
- stacked together

❏ non-uniform
- octrees
- voxel hierarchy
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3D Spatial Subdivision

Uniform subdivision - Voxel Grids

■ Constructing the voxel grid

❏ surround the scene with a bounding
cuboid

❏ split cuboid into L x M x N smaller
cuboids - these are the voxels

❏ for each voxel keep a list of objects
which encroach into its space

■ Tracing a ray through the voxel grid

❏ determine which voxels the ray passes
through

❏ only perform intersection tests on those
objects which are in the voxel list

❏ next, an illustration in 2D
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3D Spatial Subdivision

Tracing a ray through the voxel grid

■ We wish to find the first intersection

❏ follow the ray voxel-by-voxel

❏ if object is part of two adjacent voxels,
keep results of intersection test

❏ if object is hit, but intersection point is
outside current voxel, then continue

❏ only if intersection point occurs within
the current voxel can we stop
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3D Spatial Subdivision

What have we gained?

■ Ray intersects objects further down-stream
but didn’t need to be tested

❏ this would have been the case
otherwise

❏ only three voxels are considered before
a valid intersection is found

❏ 5 out of 8 possible intersection tests are
avoided

■ In practice, 3D scenes could contain 1000’s
of objects

❏ gains are much more substantial

❏ with spatial subdivision, we restrict
intersection testing to objects in the
neighbourhood of the ray’s trajectory
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3D Spatial Subdivision

Non-uniform subdivision - Octrees

■ Hierarchical tree of non-overlapping voxels
of various sizes

❏ emphasises the spatial distribution of
objects in a scene

■ Constructing the octree

❏ surround scene with bounding cuboid

❏ divide into eight equal-sized
sub-volumes or voxels

❏ keep list of objects associated with
each sub-volume

❏ if maximum number of objects/voxel is
above threshold, then subdivide again

■ Subdivision only occurs where there are lots
of objects
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3D Spatial Subdivision

Tracing a ray through an octree

■ Procedure similar to uniform case

❏ six voxels are considered before valid
intersection is found

❏ only three distinct intersection tests are
actually made

❏ ray passes through large, empty regions
of the scene very quickly

❏ useful work done only in high density
regions
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3D Spatial Subdivision

Controlling subdivision

■ Trade off between voxel resolution and
time spent traversing voxels

❏ voxel resolution controlled by maximum
number of objects/voxel

■ These can be adjusted for optimum
efficiency

■ An example of what can be achieved

❏ a uniform subdivision of a scene
containing over 10,000 objects took 15
minutes to render

❏ the same scene without voxelisation
took 40 days to render!
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Image Aliasing

What is aliasing?

■ Eye-rays passing through image plane
samples the light distribution

❏ discrete representation is only
approximate

❏ if we try to reconstruct the light
distribution, distortions occur

❏ this is aliasing

reality

image
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Image Aliasing

Anti-aliasing techniques

■ Anti-aliasing attempts to reduce the effects
of aliasing

❏ usual way is to sample each pixel more
than once - supersampling

❏ two ways to supersample

❏ uniform sampling passes eye-rays
through set of sub-pixels

❏ jittered sampling randomly displaces
the uniform sampling array

Uniform Jittered
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Image Aliasing

Reconstruction

■ We must combine the intensity information
gathered by the supersampled rays

❏ this is called filtering

■ Many ways of filtering, for example

❏ box - average the intensities

❏ gaussian - average weighted by
distance from centre of pixel

Pixel values

0 1/9 5/9

7/9 1 1
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Image Aliasing

Adaptive supersampling

■ Supersampling every pixel is generally not
necessary

❏ aliasing only noticeable along edges or
other high contrast boundaries

❏ adaptive schemes attempt to locate
pixels which need special attention

■ This is one way of doing this

❏ first shoot rays through corners of pixel
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Image Aliasing

❏ for each pixel examine variation of
these 4 samples

❏ if contrast too large (threshold user
defined) split into 4 again

❏ repeat as required
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Image Aliasing

Adaptive supersampling

■ Contrast parameter

❏ Imax and Imin largest and smallest
sample intensity

❏ required for each colour band (R, G. B)

❏ supersampling performed if any value
exceeds pre-set values

❏ for example, 0.25, 0.20, 0.40

■ Adaptive supersampling is very efficient

❏ many samples can be reused

❏ in example, only 62 out of a possible
total of 117 eye-rays are traced

C
Imax Imin–

Imax Imin+
-----------------------------=
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Radiosity

This method simulates the global
illumination distributed by diffuse light

■ Attempts to accurately model the effects
of ambient light

❏ before we just had Iakd with Ia constant

■ Uses the laws of energy conservation

❏ scenes are usually closed environments

■ We assume all surfaces are purely diffuse
reflectors

■ Radiosity is a view-independent technique

❏ we calculate the diffuse light leaving all
surfaces

❏ then render from any particular view
point
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Radiosity

The Radiosity Equation

■ Assume scene is comprised of discrete
patches

■ Energy equilibrium gives for each patch

❏ Bi is the radiosity of the patch
- energy per unit time per unit area

❏ Ei is the energy emitted (same units as B)

❏ Fji is the form-factor
- energy leaving patch j which directly
reaches patch i

❏ ρi is the diffuse reflectivity (like kd)

❏ Ai is the area of the patch

AiBi AiEi ρi BjFjiAj
j 1=

n

∑+=
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Radiosity

Form-factors

■ Assuming radiosity is constant across patch

❏ Hji is a visibility factor equal to 1 if dAj
can see dAi, otherwise 0

Ni
Nj

Ai
dAi

φi

φj

R

dAj

Aj

Fji
1
Aj
-----

φi φjcoscos

πR 2
-------------------------------

Ai
∫Aj

∫= HjidAidAj

Copyright  University of Manchester 1995 Lighting and Shading: 83

Radiosity

Form-factors

■ Reciprocity relation for form-factors

❏ applies to enclosed environment

❏ useful for calculating form-factors
- we can get Fij easily once Fji is known

■ Also, for an enclosed environment

❏ follows from energy conservation

❏ useful as a test of form-factor accuracy

AiFij AjFji=

Fij
j 1=

n

∑ 1=

Copyright  University of Manchester 1995 Lighting and Shading: 84

Radiosity

Solving the equation

■ With the reciprocity relation we can write

■ This is a set of simultaneous equations in the
unknown quantities Bi

❏ for example, a 3-patch scene

❏ we calculate the Fij and we know the Ei
hence we can determine the radiosities
of each patch

Bi Ei ρi BjFij
j 1=

n

∑+=

B1 E1 ρ1 F11B1 F12B2 F13B3+ +( )+=

B2 E2 ρ2 F21B1 F22B2 F23B3+ +( )+=

B3 E3 ρ3 F31B1 F32B2 F33B3+ +( )+=
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Computing Form-Factors

There are no known analytical solutions
to the form-factor integral equation

■ We need a numerical technique

❏ but double integrals are still tough

■ Assume the distance between patches is
large compared to their size

❏ inner integral is approximately constant

❏ form-factor from dAj to Ai

Fji
1
Aj
-----

φi φjcoscos

πR 2
-------------------------------

Ai
∫Aj

∫= HjidAidAj

Fji

φi φjcoscos

πR2
-------------------------------Hji Aid

Ai
∫=
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Computing Form-Factors

We evaluate the simplified form-factor
integral using a projection method

■ The hemi-cube algorithm is one such
method

❏ half a cube of side 2 is centred about a
patch j

❏ each face is discretised uniformly into a
number of pixels (user controllable)

❏ commonly 50x50 or 100x100

Nj

Patch j
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Computing Form-Factors

The hemi-cube algorithm

■ Next step is to project every other patch
onto the surface of the hemi-cube...

■ ... and determine which pixels are covered

❏ if two patches project to the same pixel,
the nearest one is stored

❏ this accounts for the Hji term

Patch i
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Computing Form-Factors

The hemi-cube algorithm

■ Finally, we determine the form-factors by
summing the delta-form-factors of the pix-
els which each patch projects to

❏ delta-factors can be pre-calculated

■ This gives us n form-factors relative to one
patch

❏ repeat operation with another hemi-
cube centred about another patch

❏ do this for all patches in scene

Fji ∆Fq
q
∑=
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Computing Form-Factors

Delta-form-factors

■ For a pixel on the top-face

x
y

pixel q

φi φq

1

X

Y

Z

∆Fq
1

π x2 y2 1+ +
2

-----------------------------------------∆A=
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Computing Form-Factors

Delta-form-factors

■ For a pixel on a side-face

x

zpixel q φi

φq

1

X

Y

Z

r

∆Fq
z

π x2 z2 1+ +
2

----------------------------------------∆A=
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Rendering

We now have n radiosity values, so
how do we render a particular view?

■ We want to smooth shade the surface

❏ use Gouraud method

❏ need radiosities at each patch vertex
and then interpolate across the patch

❏ For example

B1 B2

B3 B4

A B C

D
E

F

G H I
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Extrapolation

■ We extrapolate the radiosity values at the
centre of the patches to the patch vertices

■ There are 3 distinct cases:

❏ internal vertices (e.g. vertex E)

❏ edge vertices (e.g. vertex B)

❏ corner vertices (e.g. vertex A)

B1 B2

B3 B4

A B C

D
E

F

G H I
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Extrapolation

■ Internal vertices: average the radiosities of
all the patches containing the vertex

■ Edge vertices: find nearest internal vertex
and note that BX can be expressed in two
ways

❏ hence

BE B1 B2 B3 B4+ + +( ) 4⁄=

B1 B2

A B C

D E F

X

BB BE+

2
-------------------

B1 B2+

2
-------------------=

BB B1 B2 BE–+=
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Extrapolation

■ Corner vertices: find nearest internal vertex
and note average of corner vertex and its
internal vertex is the patch radiosity

❏ for example

❏ hence

B1

A B

D
E

B1 BA BE+( ) 2⁄=

BA 2B1 BE–=
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Progressive Refinement
Radiosity

So far we have covered the full-matrix
radiosity method

■ This requires

❏ O(n2) storage for the form-factors

❏ O(n2) time to solve radiosity equation

■ Progressive refinement attempts to over-
come these problems

❏ gives O(n) storage costs

❏ gives O(n) computation time costs
against some initial image

■ Progressive refinement combines image
realism with user interactivity
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Progressive Refinement

Formulation

■ Recall the energy equilibrium equation...

■ ...and consider the interaction between
two patches i and j

■ So applying a single hemi-cube at patch j
we can find the contribution of this patch
to the rest of the scene

❏ but to be used in some iterative
scheme, it’s better to consider changes
in radiosity

AiBi AiEi ρi BjFjiAj
j 1=

n

∑+=

Bi due to Bj( ) ρiBjFji

Aj
Ai
-----=
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Progressive Refinement

Formulation

■ Write this as

❏ ∆Bj is the unshot radiosity of patch j
- due to its emission of light
- or light received from other patches

■ We use the progressive refinement method
in the following way

■ For each patch keep track of two radiosity
values

❏ current radiosity estimate, Bj

❏ unshot radiosity, ∆Bj

❏ initially both these are equal to Ej

Bi due to ∆Bj( ) ρi∆BjFji

Aj
Ai
-----=
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Progressive Refinement

Formulation

■ Choose patch with largest unshot energy

❏ unshot energy is ∆BjAj

■ Shoot this energy to all other patches as
described before

❏ each patch will received a certain
amount of energy which is added to
both Bj and ∆Bj

■ Set the unshot radiosity of the shooting
patch to zero

■ With new estimates of Bj, render an image

■ Repeat this cycle again and again, render-
ing an image after each step

Copyright  University of Manchester 1995 Lighting and Shading: 99

Progressive Refinement

Formulation

■ After each step, all the ∆Bj will be
underestimates

❏ but each step reduces the relative size
of the ∆Bj

❏ hence the radiosity estimates, Bj, slowly
converge to their full-matrix values

■ The cycle is repeated until the total unshot
energy in the whole scene falls below some
predefined value
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Progressive Refinement

Ambient contribution

■ With progressive refinement, first few
images will generally be dark

❏ not all the energy has been distributed

❏ only surfaces in the direct line of sight of
the light source(s) are illuminated

■ An ambient radiosity term, Bamb, is intro-
duced for display purposes only

❏ based upon how much unshot energy
remains and how this could be distrib-
uted

❏ when rendering, use ρjBamb+Bj, instead
of Bj

❏ this value plays no part in subsequent
refinements ofBj
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Progressive Refinement

Calculating the ambient term

■ First estimate the form-factors

■ Next, determine average reflectance of
the scene

❏ from this we can write the overall inter-
reflection coefficient as

Fji
est Ai

Akk 1=

n∑
-------------------------=

ρav

ρjAjj 1=

n∑
Ajj 1=

n∑
---------------------------=

1 ρav ρav
2 ρav

3 ...+ + + + 1
1 ρav–
-------------------=
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Progressive Refinement

Calculating the ambient term

■ Then ambient radiosity term is given by

■ Note how the ambient term gracefully
diminishes as the refinement progresses

❏ Bamb → 0 as ∆Bi → 0

Bamb
1

1 ρav–
------------------- ∆BiFji

est

i 1=

n

∑=
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