Elective in Robotics

Quadrotor Modeling

(Marilena Vendittelli)

- Introduction

- Modeling
- Control Problems
- Models for control
- Main control approaches

CEA Quadrotor

DraganFlyer X4

Draganfly Innovations Inc. Hummingbird Assenning Technoogies GmbH

applications

- surveying, maintenance
- aerial transportation, manipulation
- communication networks
- search and rescue operations all these activities require vertical, stationary, slow flight a quadrotor is characterized by - high maneuverability
- vertical take-off and landing (VTOL)
- hovering capabilities

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

Pelican

Mesicopter Stanford University

STARMAC Stantord University

- four motors located at the extremities of a cross-shaped frame

$$
\begin{aligned}
& \text { • } \underset{\text { H }}{4} \\
& \overbrace{t}^{t}
\end{aligned}
$$

actuation

force distribution

$$
\begin{aligned}
& f_{i}=b \omega_{i}^{2} \quad i=1, \ldots, 4 \\
& \tau_{R, i}=d \omega_{i}^{2}
\end{aligned}
$$

- b thrust factor, d drag factor
- both depend on the rotor geometry and profile, its disk area and radius and on air density
- can be determined by static thrust test

motor control

a low level controller stabilizes the rotational speed of each blade

configuration

- (x, y, z) position of SR_{B} origin in SR_{I}
- $(\varphi, \vartheta, \psi)$ RPY angles expressing the orientation of SR $_{\mathrm{B}}$ w.r.t. SR $_{\mathrm{I}}$

$$
{ }^{\mathbf{I}} \mathbf{R}_{\mathbf{B}}=\left(\begin{array}{ccc}
c_{\psi} c_{\vartheta} & c_{\psi} s_{\vartheta} s_{\varphi}-s_{\psi} c_{\varphi} & c_{\psi} s_{\vartheta} c_{\varphi}+s_{\psi} s_{\varphi} \\
s_{\psi} c_{\vartheta} & s_{\psi} s_{\vartheta} s_{\varphi}+c_{\psi} c_{\varphi} & s_{\psi} s_{\vartheta} c_{\varphi}-s_{\varphi} c_{\psi} \\
-s_{\vartheta} & c_{\vartheta} s_{\varphi} & c_{\vartheta} c_{\varphi}
\end{array}\right)
$$

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)
equation of motion
 dynamics of a rigid body with mass m subject to external forces applied to the center of mass according to Newton-Eulero formalism
translational dynamics in SRI,

$$
\sum F_{I}=m \dot{V_{I}}
$$

F_{I} external force applied to the com and expressed in SR_{I} $V_{I}=\left(v_{x}, v_{y}, v_{z}\right)^{\prime}$ velocity of the com expressed in SR_{I}
rotational dynamics in $\mathrm{SR}_{\mathrm{B}} \quad \sum M_{B}=J \dot{\Omega}+\Omega \times J \Omega$
M_{B}, J resp. external moment around com and inertia tensor expressed in SR_{B}
$\Omega=(p, q, r)^{\prime}$ rotational velocity expressed in SR_{B}
Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

inertia matrix and rotational velocity

$$
J=\left(\begin{array}{ccc}
I_{x} & 0 & 0 \\
0 & I_{y} & 0 \\
0 & 0 & I_{z}
\end{array}\right) \quad \Omega=\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & -s_{\vartheta} \\
0 & c_{\varphi} & c_{\vartheta} s_{\varphi} \\
0 & -s_{\varphi} & c_{\vartheta} c_{\varphi}
\end{array}\right)\left(\begin{array}{c}
\dot{\varphi} \\
\dot{\vartheta} \\
\dot{\psi}
\end{array}\right)
$$

control inputs

$$
\begin{aligned}
& T=f_{1}+f_{2}+f_{3}+f_{4} \\
& \tau_{\varphi}=l\left(f_{2}-f_{4}\right) \\
& \tau_{\vartheta}=l\left(f_{1}-f_{3}\right)
\end{aligned}
$$

$$
\tau_{\psi}=-\tau_{R, 1}+\tau_{R, 2}-\tau_{R, 3}+\tau_{R, 4}
$$

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

applied forces and moments

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

mathematical model of the system

$$
\begin{aligned}
& \dot{x}=v_{x} \\
& \dot{y}=v_{y} \\
& \dot{z}=v_{z} \\
& \dot{v}_{x}=F_{A, x}-(\cos (\psi) \sin (\vartheta) \cos (\varphi)+\sin (\psi) \sin (\varphi)) \frac{T}{m} \\
& \dot{v}_{y}=F_{A, y}-(\sin (\psi) \sin (\vartheta) \cos (\varphi)-\sin (\varphi) \cos (\psi)) \frac{T}{m} \\
& \dot{v}_{z}=F_{A, z}+g-\cos (\vartheta) \cos (\varphi) \frac{T}{m} \\
& \dot{\varphi}=p+\sin (\varphi) \tan (\vartheta) q+\cos (\varphi) \tan (\vartheta) r \\
& \dot{\vartheta}=\cos (\varphi) q-\sin (\varphi) r \\
& \dot{\psi}=\sin (\varphi) \sec (\vartheta) q+\cos (\varphi) \sec (\vartheta) r \\
& \dot{p}=\tau_{A, x}+\frac{I_{r}}{I_{x}} q \Omega_{r}+\frac{I_{y}-I_{z}}{I_{x}} q r+\frac{\tau_{\varphi}}{I_{x}} \\
& \dot{q}=\tau_{A, y}+\frac{I_{r}}{I_{y}} p \Omega_{r}+\frac{I_{z}-I_{x}}{I_{y}} p r+\frac{\tau_{\vartheta}}{I_{y}} \\
& \dot{r}=\tau_{A, z}+\frac{I_{x}-I_{y}}{I_{z}} p q+\frac{\tau_{\psi}}{I_{z}}
\end{aligned}
$$

$$
\dot{\xi}=f(\xi)+g(\xi) u
$$

state
$\xi=\left(x, y, z, v_{x}, v_{y}, v_{z}, \varphi, \vartheta, \psi, p, q, r\right)^{\prime}$ inputs
$u=\left(T, \tau_{\varphi}, \tau_{\vartheta}, \tau_{\psi}\right)^{\prime}$
Ω_{r} average blades rotation velocity
I_{r} blades inertia

simplified model for control design

negligible

- aerodynamics
- gyroscopic effects

assuming

- small φ and $\vartheta \Rightarrow(\dot{\varphi}, \dot{\vartheta}, \dot{\psi}) \simeq(p, q, r)$
- symmetric shape
- negligible disturbances

$$
\begin{aligned}
& \ddot{x}=-(\cos (\psi) \sin (\vartheta) \cos (\varphi)+\sin (\psi) \sin (\varphi)) \frac{T}{m} \\
& \ddot{y}=-(\sin (\psi) \sin (\vartheta) \cos (\varphi)-\sin (\varphi) \cos (\psi)) \frac{T}{m} \\
& \ddot{z}=-\cos (\vartheta) \cos (\varphi) \frac{T}{m}+g \\
& \ddot{\varphi}=\frac{\tau_{\varphi}}{I_{x}} \\
& \ddot{\vartheta}=\frac{\tau_{\vartheta}}{I_{y}} \\
& \ddot{\psi}=\frac{\tau_{\psi}}{I_{z}}
\end{aligned}
$$

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

control and planning problems

- attitude control
- eight control
- position control
- trajectory planning
- trajectory tracking
- sensor-based control

control system

attitude control

determine the torques $\tau_{\varphi}, \tau_{\vartheta}, \tau_{\psi}$ necessary to obtain a stable desired attitude $\varphi_{d}, \vartheta_{d}, \psi_{d}$

$$
\begin{aligned}
\tau_{\varphi} & =\left[K_{\varphi p}\left(\varphi_{d}-\varphi\right)+K_{\varphi d}\left(\dot{\varphi}_{d}-\dot{\varphi}\right)\right] \\
\tau_{\vartheta} & =\left[K_{\vartheta p}\left(\vartheta_{d}-\vartheta\right)+K_{\vartheta d}\left(\dot{\vartheta}_{d}-\dot{\vartheta}\right)\right] \\
\tau_{\psi} & =\left[K_{\psi p}\left(\psi_{d}-\psi\right)+K_{\psi d}\left(\dot{\psi}_{d}-\dot{\psi}\right)\right]
\end{aligned}
$$

height control

determine the thrust T necessary to bring and keep the quadrotor to a desired height $z_{d} \Rightarrow$ from the z dynamics:

$$
T=\frac{m}{\cos (\vartheta) \cos (\varphi)}\left[g+\ddot{z}_{d}+K_{z p}\left(z_{d}-z\right)+K_{z d}\left(\dot{z}_{d}-\dot{z}\right)\right]
$$

simulation results: error

ϑ error

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

simulation results: control inputs

T

$\tau \vartheta$

τ_{φ}

τ_{ψ}

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

- advanced nonlinear control techniques guarantee better convergence and robustness performance
- exteroceptive sensors (camera, laser, sonar) allow indoor flight and can be used to obtain an accurate estimation of the system state

References

R. Mahony, V. Kumar, P. Corke, "Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor," IEEE Robotics \& Automation Magazine, vol. I9, no.3, pp. 20-32, Sept. 2012.

