Elective in Robotics

Quadrotor Modeling

(Marilena Vendittelli)

DIPARTIMENTO DI INGEGNERIA INFORMATICA Automatica e Gestionale Antonio Ruberti

- Introduction
- Modeling
- Control Problems
- Models for control
- Main control approaches

Hummingbird Ascending Technologies GmbH

Draganfly Innovations Inc.

Mesicopter Stanford University

applications

- surveying, maintenance
- aerial transportation, manipulation
- communication networks
- search and rescue operations
- all these activities require vertical, stationary, slow flight
- a quadrotor is characterized by
- high maneuverability
- vertical take-off and landing (VTOL)
- hovering capabilities

Elective in Robotics - Quadrotor Modeling (M.Vendittelli)

microdrones GmbH

STARMAC Stanford University

Pelican

MIT in coll. with Ascending Technologies GmbH

- four motors located at the extremities of a cross-shaped frame
- controlled by varying the angular speed of each rotor

actuation

force distribution f_2 $T_{R,2}$ u_2 f_3 f_4 u_4 u_4

$$f_i = b \,\omega_i^2 \qquad i = 1, \dots, 4$$
$$\tau_{R,i} = d \,\omega_i^2$$

- $\bullet \ b$ thrust factor, d drag factor
- both depend on the rotor geometry and profile, its disk area and radius and on air density
- can be determined by static thrust test

motor control

a low level controller stabilizes the rotational speed of each blade

configuration

- (x, y, z) position of SR_B origin in SR_I
- $(\varphi, \vartheta, \psi)$ RPY angles expressing the orientation of SR_B w.r.t. SR_I

$${}^{\mathbf{I}}\mathbf{R}_{\mathbf{B}} = \begin{pmatrix} c_{\psi}c_{\vartheta} & c_{\psi}s_{\vartheta}s_{\varphi} - s_{\psi}c_{\varphi} & c_{\psi}s_{\vartheta}c_{\varphi} + s_{\psi}s_{\varphi} \\ s_{\psi}c_{\vartheta} & s_{\psi}s_{\vartheta}s_{\varphi} + c_{\psi}c_{\varphi} & s_{\psi}s_{\vartheta}c_{\varphi} - s_{\varphi}c_{\psi} \\ -s_{\vartheta} & c_{\vartheta}s_{\varphi} & c_{\vartheta}c_{\varphi} \end{pmatrix}$$

dynamics of a rigid body with mass m subject to external forces applied to the center of mass according to Newton-Eulero formalism

translational dynamics in SRI

$$\sum F_I = m \dot{V}_I$$

 F_I external force applied to the com and expressed in SR_I $V_I = (v_x, v_y, v_z)'$ velocity of the com expressed in SR_I

rotational dynamics in $SR_{\mbox{\scriptsize B}}$

$$\sum M_B = J\dot{\Omega} + \Omega \times J\Omega$$

 M_B , J resp. external moment around com and inertia tensor expressed in SR_B $\Omega = (p, q, r)'$ rotational velocity expressed in SR_B Elective in Robotics - **Quadrotor Modeling** (M.Vendittelli)

inertia matrix and rotational velocity

$$J = \begin{pmatrix} I_x & 0 & 0 \\ 0 & I_y & 0 \\ 0 & 0 & I_z \end{pmatrix} \qquad \qquad \Omega = \begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} 1 & 0 & -s_{\vartheta} \\ 0 & c_{\varphi} & c_{\vartheta}s_{\varphi} \\ 0 & -s_{\varphi} & c_{\vartheta}c_{\varphi} \end{pmatrix} \begin{pmatrix} \dot{\varphi} \\ \dot{\vartheta} \\ \dot{\psi} \end{pmatrix}$$

control inputs

applied forces and moments

mathematical model of the system

$$\begin{split} \dot{x} &= v_x \\ \dot{y} &= v_y \\ \dot{z} &= v_z \\ \dot{v}_x &= F_{A,x} - (\cos(\psi)\sin(\vartheta)\cos(\varphi) + \sin(\psi)\sin(\varphi))\frac{T}{m} \\ \dot{v}_y &= F_{A,y} - (\sin(\psi)\sin(\vartheta)\cos(\varphi) - \sin(\varphi)\cos(\psi))\frac{T}{m} \\ \dot{v}_z &= F_{A,z} + g - \cos(\vartheta)\cos(\varphi)\frac{T}{m} \\ \dot{\psi} &= p + \sin(\varphi)\tan(\vartheta)q + \cos(\varphi)\tan(\vartheta)r \\ \dot{\vartheta} &= \cos(\varphi)q - \sin(\varphi)r \\ \dot{\psi} &= \sin(\varphi)\sec(\vartheta)q + \cos(\varphi)\sec(\vartheta)r \\ \dot{\psi} &= \pi_{A,x} + \frac{I_r}{I_x}q\Omega_r + \frac{I_y - I_z}{I_x}qr + \frac{\tau_\varphi}{I_x} \\ \dot{q} &= \tau_{A,y} + \frac{I_r}{I_y}p\Omega_r + \frac{I_z - I_x}{I_y}pr + \frac{\tau_\vartheta}{I_y} \\ \dot{r} &= \tau_{A,z} + \frac{I_x - I_y}{I_z}pq + \frac{\tau_\psi}{I_z} \end{split}$$

$$\dot{\xi} = f(\xi) + g(\xi) u$$

state $\mathcal{E} = (x, \cdot)$

$$\xi = (x, y, z, v_x, v_y, v_z, \varphi, \vartheta, \psi, p, q, r)'$$

inputs

$$u = (T, \tau_{\varphi}, \tau_{\vartheta}, \tau_{\psi})'$$

 $\Omega_r\,$ average blades rotation velocity

 I_r blades inertia

simplified model for control design

negligible

- aerodynamics
- gyroscopic effects

assuming

- small φ and $\vartheta \Rightarrow (\dot{\varphi}, \dot{\vartheta}, \dot{\psi}) \simeq (p, q, r)$
- symmetric shape
- negligible disturbances

$$\begin{aligned} \ddot{x} &= -(\cos(\psi)\sin(\vartheta)\cos(\varphi) + \sin(\psi)\sin(\varphi))\frac{T}{m} \\ \ddot{y} &= -(\sin(\psi)\sin(\vartheta)\cos(\varphi) - \sin(\varphi)\cos(\psi))\frac{T}{m} \\ \ddot{z} &= -\cos(\vartheta)\cos(\varphi)\frac{T}{m} + g \\ \ddot{\varphi} &= \frac{\tau\varphi}{I_x} \\ \ddot{\vartheta} &= \frac{\tau\vartheta}{I_y} \\ \ddot{\psi} &= \frac{\tau\psi}{I_z} \end{aligned}$$

control and planning problems

- attitude control
- eight control
- position control
- trajectory planning
- trajectory tracking
- sensor-based control

control system

attitude control

determine the torques $au_{\varphi_i} au_{\vartheta_i} au_{\psi_j}$ necessary to obtain a stable desired attitude $\varphi_d, \vartheta_d, \psi_d$

$$\tau_{\varphi} = [K_{\varphi p}(\varphi_d - \varphi) + K_{\varphi d}(\dot{\varphi}_d - \dot{\varphi})]$$

$$\tau_{\vartheta} = [K_{\vartheta p}(\vartheta_d - \vartheta) + K_{\vartheta d}(\dot{\vartheta}_d - \dot{\vartheta})]$$

$$\tau_{\psi} = [K_{\psi p}(\psi_d - \psi) + K_{\psi d}(\dot{\psi}_d - \dot{\psi})]$$

height control

determine the thrust T necessary to bring and keep the quadrotor to a desired height $z_d \Rightarrow$ from the z dynamics:

$$T = \frac{m}{\cos(\vartheta)\cos(\varphi)} [g + \ddot{z}_d + K_{zp}(z_d - z) + K_{zd}(\dot{z}_d - \dot{z})]$$

simulation results: error

simulation results: control inputs

- advanced nonlinear control techniques guarantee better convergence and robustness performance
- exteroceptive sensors (camera, laser, sonar) allow indoor flight and can be used to obtain an accurate estimation of the system state

References

R. Mahony, V. Kumar, P. Corke, "Multirotor Aerial Vehicles: Modeling, Estimation, and Control of Quadrotor," IEEE Robotics & Automation Magazine, vol. 19, no.3, pp. 20-32, Sept. 2012.