
What to Ask to a Peer: Ontology-based Query Reformulation

Diego Calvanese
Faculty of Computer Science

Free University of Bolzano/Bozen
Piazza Domenicani 3, I-39100 Bolzano, Italy

calvanese@inf.unibz.it

Giuseppe De Giacomo, Domenico Lembo,
Maurizio Lenzerini, Riccardo Rosati

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

Via Salaria 113, I-00198 Roma, Italy
lastname@dis.uniroma1.it

Abstract

In the recent years, the issue of cooperation, integration, and
coordination between information peers in a networked envi-
ronment has been addressed in different contexts, including
data integration, the Semantic Web, Peer-to-Peer and Grid
computing, service-oriented computing and distributed agent
systems. One of the main problems that arises in such sys-
tems is how to exploit the mappings between peers in order to
answer queries posed to one peer. The goal of this paper is to
present some basic, fundamental results on this problem. In
particular, we focus on a simplified setting based on just two
interoperating peers and we investigate how to solve the so-
called “What-To-Ask” problem: find a way to answer queries
posed to a peer by relying only on the query answering ser-
vice available at the queried peer and at the other peer. We
show that a solution to this problem exists in the case of peers
based on a basic ontology language and provide an algorithm
to compute it. We also show that, by slightly enriching the
ontology language, the problem may become unsolvable.

Introduction
In the recent years, the issue of cooperation, integration, and
coordination between information nodes in a networked en-
vironment has been addressed in different contexts, includ-
ing data integration (Halevy 2000; Lenzerini 2002), the Se-
mantic Web (Heflin & Hendler 2001), Peer-to-Peer and Grid
computing (Bernstein et al. 2002; Halevy et al. 2003), ser-
vice oriented computing and distributed agent systems (Pa-
pazoglou, Kramer, & Yang 2003; Hull et al. 2003).

Put in an abstract way, all these systems are character-
ized by an architecture constituted by various autonomous
nodes (called sites, sources, agents, or, as we call them
here, peers) which hold information, and which are linked
to other nodes by means of mappings. Two basic prob-
lems arising in this architecture are: how to discover, ex-
press, and compose the mappings between peers (Halevy et
al. 2003; Bernstein et al. 2002; Madhavan & Halevy 2003;
Fagin et al. 2004), and how to exploit the mappings in
order to answer queries posed to one peer (Halevy 2001;
Lenzerini 2002; Mattos 2003). The latter is the problem
studied in this paper.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Although several interesting results have been reported in
each of the above contexts, we argue that a deep understand-
ing of the problem of answering queries in a networked en-
vironment is still lacking, in particular when the information
in each peer is modelled in terms of a knowledge base.

The goal of this paper is to present some basic, fundamen-
tal results on this problem. We consider a simplified setting
where the whole system is constituted by only two peers,
called local and remote, respectively. Suitable mappings re-
late information in the remote peer to the information in the
local peer. We assume that the queries to be answered are
posed to the local peer, and that each of the two peers pro-
vides the service of answering queries expressed over its un-
derlying knowledge base, with these two services being the
only basic services that we can rely upon. Thus, the formal
problem we address in the paper, called the “What-To-Ask”
problem, is to find a way to answer queries posed to the lo-
cal peer by relying only on the two query answering services
available at the peers.

Example 1 Consider, for example, a music sharing system,
and assume that the peer SongUniverse exports both actual
songs and knowledge about various types of music, e.g., the
fact that live rock songs are live performance songs. Assume
now that SongUniverse stores live songs and also knows
that other live rock songs can be retrieved from the remote
peer RockPlanet. Now, when Carol visits SongUniverse
to get live songs of U.K. artists, what this peer can do is:
(i) directly provide her with the live songs of U.K. artists
that it stores locally, and (ii) deduce that also live rock songs
suit Carol’s needs, and reformulate Carol’s request by asking
RockPlanet about live rock songs of U.K. artists.

In this paper, we study the What-To-Ask problem in a
first-order logic (FOL) context. Specifically, we present the
following contributions.

1. We formalize the above mentioned architecture, we define
its semantics, and we give a precise characterization of
the semantics of query answering. We provide the formal
definition of the “What-To-Ask” problem, taking into ac-
count both the semantics of query answering and the fact
that, when answering a query posed to the local peer, we
can only rely on the two query answering services avail-
able at the peers.

2. We specialize the general framework to the case where
a basic ontology language is used to express the knowl-
edge bases of the two peers. We show that in this case
there is an algorithm that allows us to solve any instance
of “What-To-Ask”, i.e., that allows to compute what we
should ask to the remote peer in order to answer a query
posed to the local peer.

3. We show that, if we slightly enrich the expressive power
of the ontology language, there are instances of the
“What-To-Ask” problem that do not admit solutions.

The rest of the paper is organized as follows. First, we
present a general formal framework for knowledge-based
peer interoperation and provide the definition of the What-
To-Ask problem. Then, we consider a particular instantia-
tion of the general framework where the knowledge base is
expressed in a basic ontology language allowing for the def-
inition of classes, roles, and subsumption between classes,
and provide for such a case a solution to the What-To-Ask
problem. Next, we show that by enriching the ontology lan-
guage with subsumption between roles, the What-To-Ask
problem may admit no solutions. Finally, we discuss some
related work, and conclude the paper.

The Framework
In this section we set up a formal framework for knowledge-
based peer interoperation.

Each knowledge-based peer contains a knowledge base
K that it can use to make logical inferences. The peer ex-
ports a suitable fragment V of K to the agents willing to
use the peer, here called clients. Clients can ask to the peer
only queries that are accepted by the peer, i.e., expressed in
some given query language over the exported fragment V of
the knowledge base K that the peer supports. The peer an-
swers such queries by exploiting inference from its knowl-
edge base K.

Apart from using its knowledge base K, each peer can be
connected with other knowledge-based peers to which it can
ask queries that can be accepted by them. Suitable mappings
between the peers give the means to interpret the answers to
queries posed to the remote peer. Basically, mappings estab-
lish the relationship between given queries posed over the
peer knowledge base K and queries accepted by a remote
peer.

In this paper we focus on a system made up by two inter-
operating knowledge-based peers. One of them, called lo-
cal peer, is the one with whom the client interacts, i.e., asks
queries. The other peer will be referred to as the remote
peer, and the knowledge contained in it will be exploited in-
directly by the local peer through the mappings to enhance
its answer to the client. We further assume that, while the lo-
cal peer exploits the remote peer through the mappings, the
remote peer does not use in any way the knowledge of the
local one. This very simple setting will already allow us to
uncover various subtleties of an interoperating knowledge-
based peer system.

Next, we formalize such a framework. We assume that the
domain of interpretation is a fixed denumerable set ∆ of el-
ements and that every such element is denoted uniquely by a

constant, called its standard name (Levesque & Lakemeyer
2001). We denote by Γ the set of standard names and we
assume that Γ is part of the alphabet of the local knowledge
base in each peer. With this assumption in place, we turn our
attention to the notion of knowledge-based peer.

Definition 2 A knowledge-based peer is a tuple of the form
P = 〈K,V,M〉 where:

• K is a knowledge base written in some subset of first-
order logic (FOL) on the alphabet formed by the standard
names as constants, and a set of relation names (we do not
consider functions in this paper);

• V is the exported fragment of K (i.e., a knowledge base
formed as a subset of K);

• M is a set of mapping assertions whose form will be
shown below.

Clients pose their queries over the exported fragment V
of a peer P . Queries that we consider in our framework
are expressed in a language which amounts to a fragment
of FOL. We remind the reader that a FOL query is an open
formula of the form

{x1, . . . , xn | φ(x1, . . . , xn)}

where x1, . . . , xn are the free variables of φ, and n is the
arity of the query. In general, a peer P supports queries
expressed in some subset of FOL, and clients can ask queries
to P as long as such queries are accepted by P . Formally,
this is captured as follows.

Definition 3 Given a knowledge-based peer P =
〈K,V,M〉, a query q is accepted by P if q is a query
over the alphabet of V expressed in the subset of FOL
(possibly with equalities) that is supported by P .

A knowledge-based peer system is formed by several
peers sharing the domain of interpretation and the set of
standard names. Here we concentrate on knowledge-based
systems of a very specific form. They consist of only
two peers, namely P` = 〈K`, V`,M`〉, called local peer,
which is the peer to which the client is connected, and
Pr = 〈Kr, Vr, ∅〉, called remote peer. Observe that the re-
mote peer does not contain mapping assertions at all.

The mapping M` in the local peer is constituted by a finite
set of assertions of the form

qr ; q`,

where qr and q` are two queries of the same arity, called
local and remote query, respectively. The local query q` is
expressed in some FOL query language over K`, while the
remote query qr must be a query accepted by Pr.

A mapping assertion qr ; q` has an immediate interpre-
tation in FOL: it states that

∀x1, . . . , xn.φr(x1, . . . , xn) ⊃ φ`(x1, . . . , xn),

where φ` and φr are the open formulas constituting the
queries q` and qr, respectively.1

1This form of mappings is often refereed to as GLAV sound
mappings in data integration (Lenzerini 2002).

Let us now turn our attention to the notion of answer to
a query posed to our knowledge-based peer system, i.e., a
query posed to the local peer P` of the system. First of all,
we recall the notion of certain answers to a query posed over
a first-order theory.

Definition 4 Given a FOL query q of arity n over a FOL
theory T , the certain answers cert(q, T) to q over T is the
set of tuples of constants of Γ such that:

cert(q, T) = {(c1, . . . , cn) | (c1, . . . , cn) ∈ qI

for all I such that I |= T },

where qI denotes the result of evaluating q in the interpre-
tation I. (Recall that the interpretation of constants, i.e.,
standard names, is the same in every interpretation.)

In our framework, we assume that each peer P =
〈K,V,M〉 is only able to provide the certain answers
cert(q,K), inferable from its knowledge base K, to queries
accepted by P itself.

Now, ideally, we would like, given a client’s query q ac-
cepted by the local peer P`, to return all certain answers that
are inferable from all the knowledge in the system. That is,
we aim at computing cert(q,K`∪Kr∪M`). However, to do
so we can rely only on the query answering services avail-
able at the peers. In other words, we need to exploit the kind
of certain answers that peers can actually compute, that is
certain answers with respect to their knowledge base. First,
we can directly use the certain answers cert(q,K`) provided
by the local peer P`. Then, to use the certain answers pro-
vided by the remote peer Pr, we need to reformulate in some
way the query q into a finite set {q1r , . . . , qn

r } of queries, each
accepted by the remote peer Pr, and require that the union
of cert(q,K`) with the certain answers computed by Pr for
each qi

r gives us cert(q,K`∪Kr∪M`). Formally, we define
the What-To-Ask problem as follows.

Definition 5 Consider a knowledge-based peer system con-
sisting of a local peer P` = 〈K`, V`,M`〉 and a remote peer
Pr = 〈Kr, Vr, ∅〉, and let q be a client’s query accepted
by P`. The What-To-Ask problem, WTA(q, P`, Pr), is de-
fined as follows: Given as input P̀ and q, find a finite set
{q1

r , . . . , qn
r } of queries, each accepted by the remote peer

Pr, such that2

cert(q,K` ∪Kr ∪M`) = cert(q,K`) ∪
n⋃

i=1

cert(qi
r,Kr).

Notice that, in general, several solutions to the What-
To-Ask problem may exist, i.e., there may be several sets
of queries for which the conditions described above hold.
However, it is easy to see that, according to Definition 5,
all solutions are equivalent from a semantic point of view,

2Note that in finding qi
r we can exploit neither Kr nor Vr , since

Pr is not an input of the problem, but is only used as a parameter
to the problem necessary to formulate the notion of “accepted by
Pr”.

i.e., each of them allows us to obtain all certain answers in-
ferable from the knowledge managed by the peer system.
Nonetheless, syntactic differences might exist between dif-
ferent solutions that could lead one to prefer one solution to
another, e.g., if the set of queries in the former is contained
in the set of queries in the latter. However, we focus here on
solving the What-To-Ask problem (i.e., finding any solution
that satisfies Definition 5) in the specific setting described
in the next section, whereas the problem of characterizing
which solution is “better”, and of finding the “best” solu-
tions is outside the scope of this paper.

The What-To-Ask Problem in an
Ontology-Based Framework

We now consider a particular instantiation of the formal
framework described above, and provide for a such case a
solution to the What-To-Ask problem.

Specialized Framework
To specialize the formal framework for knowledge-based
peers described above, we consider specific choices for the
language in which a peer knowledge base is expressed, for
the language of queries accepted by peers, and for the query
language to be used in the local query of mapping assertions.

We concentrate first on the language in which to express
the peer knowledge base. The language we use, called
LO

K in the following, is a subset of FOL that captures the
fundamental features of frame-based knowledge representa-
tion formalisms and of ontology languages for the Seman-
tic Web. The alphabet of LO

K consists of constants from
Γ, and of unary and binary predicates, called classes and
roles respectively. Classes denote sets of objects, while roles
denote binary relationships between classes. The language
LO

K consists of two components, to represent respectively in-
tensional and extensional knowledge in the peer knowledge
base K.

The intensional component of LO
K allows for capturing

typical ontology constructs, namely typing of roles, manda-
tory participation to roles for the objects in a class, function-
ality of direct and inverse roles, and subsumption between
classes. To keep the presentation simple, we represent the
constructs of LO

K using a graphical notation, and specify
their semantics in FOL. Specifically, the intensional com-
ponent of K is a directed graph whose nodes are classes and
whose edges represent either roles or subsumption relation-
ships.

Classes of K, in the following denoted by the letter C,
possibly with subscripts, are represented by means of a rect-
angle containing the name of the class. Roles of K, in the
following denoted by the letter R, possibly with subscripts,
are represented by means of a (thin) arrow, labeled with the
name of the role, connecting two classes, called respectively
the first and second component of the role. Each role is also
labeled with participation and functionality constraints for
both components, as depicted in Figure 1, where
• m1 and m2 may be either

– 0, which means there is no constraint on the participa-
tion, or

C1

R

C2
m1, n1 m2, n2

Figure 1: A role in the intensional component of a peer knowledge base

C1 C2

Figure 2: Subsumption in the intensional component of a peer knowledge base

– 1, which means mandatory participation;

• n1 and n2 may be either

– 1, which means functionality, or
– ∞, which means there is no constraint.

In the graphical representation we omit constraints of the
form (0,∞).

The FOL assertions that specify the semantics of the frag-
ment of knowledge base shown in Figure 1 are the following:
• assertions specifying the typing of the two components of

the role:

– an assertion specifying the typing of the first compo-
nent of the role:

∀x, y.R(x, y) ⊃ C1(x);

– an assertion specifying the typing of the second com-
ponent of the role:

∀x, y.R(x, y) ⊃ C2(y);

• possibly, assertions specifying the mandatory participa-
tion to the role:

– if m1 = 1, then:

∀x.C1(x) ⊃ ∃y.R(x, y);

– if m2 = 1, then:

∀y.C2(y) ⊃ ∃x.R(x, y);

• possibly, assertions specifying functionality of the role:

– if n1 = 1, then:

∀x, y1, y2.R(x, y1) ∧R(x, y2) ⊃ y1 = y2;

– if n2 = 1, then:

∀x1, x2, y.R(x1, y) ∧R(x2, y) ⊃ x1 = x2.

LO
K is equipped with a subsumption relationship between

classes, denoted by a thick hollow arrow from the subsumed
class to the subsuming class, as depicted in Figure 2. The
corresponding FOL formula specifying the semantics is:

∀x.C1(x) ⊃ C2(x).

The extensional component of LO
K contains facts and ex-

istential formulas, possibly involving constants of Γ. Specif-
ically, each such assertion has one of the forms

C(a), ∃x.C(x),

R(a1, a2), ∃x1, x2.R(x1, x2),

∃x.R(a, x), ∃x.R(x, a),

where C and R are respectively a class and a role of K, and
a, a1, and a2 are constants of Γ.

To summarize, a peer knowledge base K expressed in LO
K

consists of a set of FOL assertions representing intensional
information, and of a set of facts and existential formulas,
representing extensional information.3 In the following, we
view the whole knowledge base of a peer as a set of FOL as-
sertions (those that specify the semantics of the intensional
component, together with the extensional component) ex-
pressed over an alphabet of classes and roles.

Let us now turn the attention to the language of queries
accepted by a peer. We adopt the language of conjunctive
queries (Abiteboul, Hull, & Vianu 1995), which offers a rea-
sonable trade-off between expressive power and complexity
of query processing, and is thus adopted in most data inte-
gration proposals.

Definition 6 A conjunctive query (CQ) q is a formula of the
form

{z1, . . . , zn | ∃y1, . . . , ym.φ(z1, . . . , zn, y1, . . . , ym)},

where z1, . . . , zn are (not necessarily pairwise distinct) vari-
ables or constants of Γ, and φ(z1, . . . , zn, y1, . . . , ym) is a
conjunction of atoms, possibly containing constants of Γ,
whose predicates are classes or roles, and whose free vari-
ables are the variables in z1, . . . , zn, y1, . . . , ym. We call
(z1, . . . , zn) the head of q.

Note that a CQ written in the form above corresponds to
a FOL query

{x1, . . . , xn | ∃y1, . . . , ym.φ(x1, . . . , xn, y1, . . . , ym)∧eqs},

where x1, . . . , xn are pairwise distinct variables, and eqs is
a conjunction of equalities, with one equality xi = c when-
ever zi is a constant c, and one equality xi = xj , whenever
zi is the same variable as zj .

With regard to the specification of mappings, we need
only to define which is the query language used for ex-
pressing local queries in the mapping assertions. Indeed,
remote queries are queries accepted by the remote peer
Pr = 〈Kr, Vr, ∅〉, and thus are CQs over the exported frag-
ment Vr. We consider here mapping assertions that allow for
establishing a basic form of correspondence between knowl-
edge in different peers, namely to map a single element of

3Note that LO

K can be seen as a specific description
logic (Baader et al. 2003).

the knowledge base of the local peer to a CQ over Vr. Hence,
each local query in a mapping assertion is just a single atom
(different from equality), and each mapping assertion (in the
local peer) has one of the forms

qr ; {x | C(x)} or

q′r ; {x1, x2 | R(x1, x2)},

where qr (resp., q′r) is a CQ of arity 1 (resp., 2) over the
exported fragment of the remote peer, and C (resp., R) is a
concept (resp., role) of the local peer. Moreover, we assume
that for each concept C or role R of the local peer, there is
at most one mapping assertion in which C (resp., R) is used
in the local query.

We note that, in data integration terminology, the map-
pings we have considered here would correspond to a form
of mapping called global-as-view (GAV), where the local
knowledge base corresponds to a global schema of a data in-
tegration system, the remote knowledge base corresponds to
a set of data sources, and each concept of the global schema
is defined by means of a CQ over the data sources.

Example 7 Consider a peer P` = 〈K`, V`,M`〉 in which
the intensional component for the local knowledge base K`

is the one shown in Figure 3(a).
The graphical representation corresponds to the following

set of FOL assertions:

∀x, y.Member(x, y) ⊃ Employee(x)
∀x, y.Member(x, y) ⊃ Dept(y)
∀x.Employee(x) ⊃ ∃y.Member(x, y)
∀x, y1, y2.Member(x, y1) ∧Member(x, y2) ⊃ y1 = y2

∀x, y.Director(x, y) ⊃ Manager(x)
∀x, y.Director(x, y) ⊃ Dept(y)
∀y.Dept(y) ⊃ ∃x.Director(x, y)
∀x1, x2, y.Director(x1, y) ∧Director(x2, y) ⊃ x1 = x2

∀x.Manager(x) ⊃ Employee(x)

Similarly, the intentional component for the remote
knowledge base shown in Figure 3(b) corresponds to the fol-
lowing set of FOL assertions:

∀x, y.MemberR(x, y) ⊃ EmployeeR(x)
∀x, y.MemberR(x, y) ⊃ DeptR(y)
∀x, y.BossR(x, y) ⊃ EmployeeR(x)
∀x, y.BossR(x, y) ⊃ ManagerR(y)

Assuming that the exported portion of the remote knowl-
edge base coincides with the set of concepts and roles ap-
pearing in it, a possible set of mapping assertions for the
local peer is shown in Figure 4.

Computing What-To-Ask
We now present an algorithm that solves the What-To-Ask
problem in the setting described above. We consider a local
peer P` = 〈K`, V`,M`〉, a remote peer Pr = 〈Kr, Vr, ∅〉,
and a client’s conjunctive query q that is accepted by P`.
In a nutshell, our algorithm first reformulates the client’s
query q into a set Q of conjunctive queries expressed over
K`, in which it compiles the knowledge of the local knowl-
edge base that is relevant for answering q; then, according to

the mapping M`, the algorithm reformulates the queries of
Q into a set of queries that are accepted by the remote peer.

Before proceeding further, we point out that we assume
in the following that the theory K` ∪Kr ∪M` is consistent,
and we do not consider the case where the knowledge bases
at the peers are mutually inconsistent.4

Let us now formally describe the algorithm. To this aim,
we need a preliminary definition.

Definition 8 Given a CQ q, we say that a variable x is un-
bound in q if it occurs only once in q, otherwise we say that
x is bound in q. Notice that variables occurring in the head
of the query are all bound. A bound term is either a bound
variable or a constant.

In Figure 5 we define the algorithm computeWTA. In
the algorithm, each unbound variable is represented by the
symbol −. Also, q[g/g′] denotes the query obtained from q
by replacing the atom g with a new atom g′.

For each query q ∈ Q, the algorithm first checks if there
exists an assertion stating a semantic relationship among
classes and roles of K` that can be used to produce a new
query to be added to the set Q (steps (a), (b), and (c)). Three
kinds of assertions are taken into account: (i) subsumption
between classes, (ii) participation of classes in roles, and (iii)
mandatory participation of classes in roles. computeWTA
makes use of these assertions as rewriting rules that allow
to reformulate the original query q into a set of queries, by
compiling away the knowledge specified by K̀ that is rele-
vant for computing cert(q,K` ∪Kr ∪M`). More precisely,
the algorithm produces from q a new query for each atom g
in q whose symbol corresponds to a class or role involved in
an assertion and such that the assertion propagates all bound
terms occurring in g. The new query is obtained from q by
replacing g with a reformulation g′ of g, constructed accord-
ing to the assertion.

Then, computeWTA checks if q contains two atoms g1

and g2 that unify (step (d)). In this case, the algorithm com-
putes the query reduce(q, g1, g2), which is obtained by ap-
plying to the query q the most general unifier between g1

and g2 (Lloyd 1987). Such a new query is then transformed
by the function τ , which replaces with − each variable sym-
bol x such that there is a single occurrence of x in q. The
use of τ is necessary in order to guarantee that each unbound
variable is represented by the symbol −. The query is then
added to Q.

Finally, computeWTA reformulates the queries produced
in the above steps into a set of queries accepted by the re-
mote peer Pr, by means of the procedure Mref . Such a
procedure implements a standard unfolding technique (Ull-
man 1997): roughly speaking, mapping assertions are used
as rewriting rules for translating the initial set of queries into
a set of queries accepted by the remote peer.

In the following we show termination of computeWTA,
and soundness of the algorithm with respect to the What-
To-Ask problem.

4For an analysis on the inconsistency problem in the context of
database and knowledge base integration see, for example, (Calı̀,
Lembo, & Rosati 2003; Subrahmanian 1994).

Member

Director

(1, 1)Employee

Manager

Dept

(1, 1)

MemberR

BossR

EmployeeR DeptR

ManagerR

(a) (b)

Figure 3: Intensional component of the local and remote knowledge bases for Example 7

{x | DeptR(x)} ; {x | Dept(x)}
{x | EmployeeR(x)} ; {x | Employee(x)}
{x | ManagerR(x)} ; {x | Manager(x)}

{x, y | ∃z.BossR(x , z) ∧MemberR(z , y)} ; {x, y | Director(x , y)}
{x, y | MemberR(x , y)} ; {x, y | Member(x , y)}

Figure 4: Mapping assertions for the local peer for Example 7

Theorem 9 Let P` = 〈K`, V`,M`〉 be a local peer, Pr =
〈Kr, Vr, ∅〉 a remote peer, and q a CQ accepted by P`. Then,
computeWTA(q, P`) terminates.

Proof (sketch). Termination of the algorithm follows
immediately from the fact that the number of conjunctive
queries that can be generated by the algorithm is finite. In-
deed, each replacement performed by the algorithm replaces
an atom by a single atom, and hence the length (i.e., the
number of atoms) of a generated query is at most equal to
the length of the query q. Moreover, since the number of
assertions in K` is finite, the number of different atoms that
can be generated by the algorithm is finite.

Theorem 10 Let P` = 〈K`, V`,M`〉 be a local peer,
Pr = 〈Kr, Vr, ∅〉 a remote peer, and q a CQ accepted
by P`. Then, computeWTA(q, P`) returns a solution for
WTA(q, P`, Pr).

Proof (sketch). To prove the claim we need to show that

cert(q,K` ∪Kr ∪M`) = cert(q,K`) ∪
n⋃

i=1

cert(qi
r,Kr)

where {q1
r , . . . , qn

r } are the queries accepted by Pr that are
returned by computeWTA. We proceed in three steps.

In the first step we show that

cert(q,K` ∪Kr ∪M`) =

n⋃

i=1

cert(qi
`,K

E
` ∪Kr ∪M`),

where:

• KE
` is the knowledge base obtained from K` by deleting

all assertions of the intentional component (i.e., subsump-
tion between classes, typing of roles, mandatory partici-
pation to roles, and functionality of roles), keeping only
the extensional component (together with the alphabet of
classes and roles).

• {q1
` , . . . , qn

` } is the set of queries Q (see Figure 5) pro-
duced by computeWTA at the end of the repeat-until cy-
cle (i.e., before the final reformulation by means of the
operator Mref).

Roughly speaking, the above property states that the algo-
rithm first compiles away the intensional component of K̀
into the queries {q1

` , . . . , qn
` } in such a way that

cert(q,K`) =
n⋃

i=1

cert(qi
`,K

E
`).

In the second step, we notice that KE
` cannot contribute in

inferring new tuples in the answer to each qi
` apart for those

retrievable from its extensional knowledge. Hence, we get
such tuples by simply relying on the certain answers service
provided by the local peer, i.e.,

cert(q,K`∪Kr∪M`) = cert(q,K`)∪
n⋃

i=1

cert(qi
l ,Kr∪M`)

Finally, in order to get tuples inferred by Kr ∪ M` we
apply the procedure Mref (unfolding) to {q1

` , . . . , qn
` } (last

step of the algorithm). From soundness and completeness of
unfolding, we easily obtain

cert(q,K` ∪Kr ∪M`) = cert(q,K`) ∪
n⋃

i=1

cert(qi
r,Kr),

thus proving the claim.

Notice that computeWTA does not consider functionality
constraints asserted on the components of the roles in K` for
computing the set Q. Indeed, as the above theorem shows,
functionality constraints do not interact with the other de-
pendencies enforced by the knowledge base, thus allowing
computeWTA to proceed as if they would not be specified.

Algorithm computeWTA(q, P`)

Input: CQ q, ontology-based peer P` = 〈K`, V`,M`〉
Output: set of conjunctive queries Mref (Q,M`) over Pr

begin
Q← {q};
repeat

Qaux ← Q;
for each q ∈ Qaux do
(a) for each atom C(x) in q do

for each assertion in K` of the form ∀x.C1(x) ⊃ C2(x)
(i.e., subsumption) do

Q← Q ∪ { q[C1(x)/C2(x)] };
for each assertion in K` of the form ∀x, y.R(x, y) ⊃ C(x)

(i.e., typing of the first role) do
Q← Q ∪ { q[C(x)/R(x,−)] }

for each assertion in K` of the form ∀x, y.R(x, y) ⊃ C(y)
(i.e., typing of the second role) do

Q← Q ∪ { q[C(x)/R(−, x)] };
(b) for each atom R(x,−) in q do

for each assertion in K` of the form ∀x.C(x) ⊃ ∃y.R(x, y)
(i.e., mandatory participation to the first component) do

Q← Q ∪ { q[R(x,−)/C(x)] };
(c) for each atom R(−, y) in q do

for each assertion in K` of the form ∀y.C(y) ⊃ ∃x.R(x, y)
(i.e., mandatory participation to the second component) do

Q← Q ∪ { q[R(−, y)/C(y)] };
(d) for each pair of atoms g1, g2 in q do

if g1 and g2 unify
then Q← Q ∪ {τ(reduce(q, g1, g2))}

until Qaux = Q;

Qres = Mref (Q,M`);
return Qres

end

Figure 5: Algorithm computeWTA

We point out that this property cannot be always generalized
to more powerful languages for specifying ontologies. In the
next section we will discuss one of such cases, and provide
a significant example in which this behavior does not hold.

Next, we turn to computational complexity of the algo-
rithm and provide the following result.

Theorem 11 Let P` = 〈K`, V`,M`〉 be a local peer, Pr =
〈Kr, Vr, ∅〉 a remote peer, and q a CQ accepted by P`. Then,
the computational complexity of computeWTA(q, P`) is ex-
ponential in the size of the query q and polynomial in the
size of K` and M`.

Proof. We observe that the maximum number of atoms
of a generated query is equal to the number k of atoms of
the initial query q, and that for each atom of the query, the
number of different atoms that can be generated by the al-
gorithm is bound by the number of assertions that can be
specified in K̀ and that can be applied in the computation.
It is immediate to verify that such a number is O(n2), where
n is the size of K`. Therefore, the computational complex-
ity of the algorithm is nO(k). Hence, if k is assumed to be
constant, the computational complexity of the algorithm is
polynomial.

We point out that, since the number of queries generated
by computeWTA is exponential only in the size of the ini-
tial query, and typically such a size can be assumed to be
small, the exponential blow-up is not likely to be a problem
in practice.

Example 7 (continued) Consider the query

q0 = {x | Employee(x)}

that is accepted by the local peer P`, and execute
computeWTA(q0, P`). Since Manager is subsumed by
Employee , then the algorithm produces the query

q1 = {x | Manager(x)},

and since Employee is the first component of the role
Member , then the algorithm produces the query

q2 = {x | Member(x,−)}.

It should be easy to see that the algorithm does not gen-
erate any other reformulation. Then, computeWTA applies
the operator Mref to the set Q = {q0, q1, q2}, thus produc-
ing the queries

{x | EmployeeR(x)},
{x | ManagerR(x)}, and
{x | MemberR(x, y)},

where the symbol − has been replaced by the new fresh vari-
able symbol y.

Adding Subsumption between Roles
As shown by Theorem 10, in the specialized framework
of the previous section, the What-To-Ask problem has al-
ways a solution (which can be computed by the algorithm
computeWTA). In this section we show that, if we only add
to the ontology language LO

K the possibility of specifying

subsumption relations between roles, such a property does
not hold anymore, i.e., What-To-Ask may have no solutions.

We define an new ontology language LO
K

+
, containing the

same constructs as LO
K , except that, in addition, we allow for

expressing subsumption relations between roles. We repre-
sent an assertion stating that a role R1 is subsumed by a role
R2 by using a thick hollow arrow from R1 to R2. The cor-
responding FOL formula specifying the semantics is:

∀x, y.R1(x, y) ⊃ R2(x, y).

We now prove that, for peers using the ontology language
LO

K

+
, the What-To-Ask problem does not always have a so-

lution.

Theorem 12 There exists a pair of knowledge-based peers
P` and Pr with K`, Vr ∈ LO

K

+
and a CQ q accepted by

P` such that WTA(q, P`, Pr) has no solutions whenever the
language accepted by Pr is a subset of the language of FOL
queries.

Proof. We exhibit an example of a pair of knowledge-
based peers P` and Pr such that the claim holds. More pre-
cisely, let us consider P` = 〈K`, V`,M`〉, Pr = 〈Kr, Vr, ∅〉
where:

• V` is the ontology displayed in Figure 6, i.e., it comprises
the classes C1, C2, C3, C4, the roles R1 (between C2

and C1), R2 (between C1 and C2), and R3 (between C3

and C4), the mandatory participation of C2 to R1 and of
C1 to R2, the functional participation of C3 to R3, the
subsumption between roles R1 and R2 and between roles
R2 and R3;

• K` = V` ∪ {R1(a, b)};

• M` consists of the single assertion

{x, y | Rr(x, y)} ; {x, y | R3(x, y)};

• Vr = {Rr};

• Kr is simply a set of facts for Rr.

We prove that the answer to the boolean query {R1(c, d)}
over V` is true if and only if the following condition holds:

[Cond] There exist n + 1 constants a1, . . . , an+1 (with
n even) such that a1 = b, an = c, an+1 = d and
Rr(ai, ai+1) ∈ Kr for 1 ≤ i ≤ n.

Indeed, if condition [Cond] holds, then it is immediate to
verify that, due to (i) the functionality of the participation
of C3 to R3, (ii) the two subsumption relation between the
three roles, and (iii) the two mandatory participations of C1

and C2, in each model I for K` ∪ Kr ∪M each tuple of
the form 〈ai, ai+1〉 must belong to RI

1 if i is even and to
RI

2 if i is odd, which implies that 〈c, d〉 ∈ RI

1 . Conversely,
if condition [Cond] does not hold, then it is immediate to
exhibit a model I for K`∪Kr ∪M in which the tuple 〈c, d〉
is not in RI

1 .
Then, observe that verifying the above condition [Cond]

requires to compute the transitive closure of Rr, which in
general cannot be done through a finite number of FOL
queries over Pr. Therefore, the claim follows.

(0, 1)C3 C4

R3

C1 C2
(1,∞)

R2

(1,∞)

R1

Figure 6: Ontology of peer P` in the proof of Theorem 12

Notice that the above theorem states that the What-To-
Ask problem may have no solutions (and its proof exhibits
an example of peers for which the problem has no solution)
even under the assumption that the remote peer accepts arbi-
trary FOL queries over the ontology Vr. That is, even if we
empower the answering abilities of the remote peer to the
full FOL language, the What-To-Ask problem may have no
solutions. This fact highlights the crucial role played by the
expressiveness of the language for specifying the local peer
knowledge base K` in the What-To-Ask problem: indeed,
by simply adding the possibility of expressing role subsump-
tion to our specialized framework, we are not guaranteed
anymore that a solution to our problem always exists.

Related Work
The problem studied in this paper is crucial in several con-
texts.

First, our work provides new results to data integration.
Indeed, the algorithm computeWTA can be seen as a new
query rewriting algorithm, in particular in the case where the
global schema is expressed as an ontology. Although recent
papers address the issue of query rewriting under integrity
constraints (see, for example, (Calı̀ et al. 2003; Calı̀, Lembo,
& Rosati 2003)), the constraints deriving by our ontology
languages have not been considered in the data integration
literature.

The What-To-Ask problem is of clear relevance for the
Semantic Web, even if research on the Semantic Web has fo-
cused more on the problem of ontology matching (i.e., find-
ing the mapping between peers). The problem of reformu-
lating queries over ontologies has been investigated in (Cal-
vanese, De Giacomo, & Lenzerini 2002; Tzitzikas, Constan-
topoulos, & Spyratos 2001). To the best of our knowledge,
the present work is the first one that deals with query re-
formulation when one is forced to rely only on the query
answering services of the peers.

The research on P2P and Grid computing is also related
to our approach. However, the works on query answering
in such architectures either assume that peers are databases
(and not knowledge bases, nor ontologies), or deal with
query languages that are much less expressive than those
considered in our investigation. A notable exception is (Ser-
afini & Ghidini 2000), where peers are assumed to be knowl-

edge bases. However, the problem studied there is different
from our reformulation problem.

Finally, our work can be seen as providing a service-
oriented architecture, where the algorithm presented in Sec-
tion aims at computing the “composition” of the query an-
swering services provided by the peers. We are aware of
only one paper with similar objectives, namely (Thakkar,
Ambite, & Knoblock 2003). However, in that paper, peers
do not have constraints, and the query reformulation prob-
lem is therefore easier than the one addressed here.

Conclusions
In this paper we have formally defined the What-To-Ask
problem, which captures a fundamental issue in a networked
environment based on information exchange. We have seen
that even small changes in the representation formalism may
affect seriously the ability of dealing with this problem, and
hence particular care must be put into choosing the form of
knowledge used by interoperating systems. To show this, it
has been sufficient to look at a simplified setting with only
two interoperating peers.

The impact of having more than two peers (each with its
own mappings) remains to be investigated. Also, it is worth
studying query answering in the case where the knowledge
bases at the peers are mutually inconsistent (in the line
of (Calı̀, Lembo, & Rosati 2003)), since this is of relevance
in real domains.

Acknowledgments
This research has been partially supported by the Projects
INFOMIX (IST-2001-33570) and SEWASIE (IST-2001-
34825) funded by the EU, by MIUR - Fondo Speciale per
lo Sviluppo della Ricerca di Interesse Strategico — project
“Società dell’Informazione”, subproject SP1 “Reti Internet:
Efficienza, Integrazione e Sicurezza”, and by project HY-
PER, funded by IBM through a Shared University Research
(SUR) Award grant.

References
Abiteboul, S.; Hull, R.; and Vianu, V. 1995. Foundations
of Databases. Addison Wesley Publ. Co., Reading, Mas-
sachussetts.

Baader, F.; Calvanese, D.; McGuinness, D.; Nardi, D.;
and Patel-Schneider, P. F., eds. 2003. The Description
Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press.

Bernstein, P. A.; Giunchiglia, F.; Kementsietsidis, A.; My-
lopoulos, J.; Serafini, L.; and Zaihrayeu, I. 2002. Data
management for peer-to-peer computing: A vision. In
Proc. of the 5th Int. Workshop on the Web and Databases
(WebDB 2002).

Calı̀, A.; Calvanese, D.; De Giacomo, G.; and Lenzerini,
M. 2003. Data integration under integrity constraints. In-
formation Systems. To appear.

Calı̀, A.; Lembo, D.; and Rosati, R. 2003. Query rewrit-
ing and answering under constraints in data integration sys-
tems. In Proc. of the 18th Int. Joint Conf. on Artificial In-
telligence (IJCAI 2003).

Calvanese, D.; De Giacomo, G.; and Lenzerini, M. 2002.
A framework for ontology integration. In Cruz, I.; Decker,
S.; Euzenat, J.; and McGuinness, D., eds., The Emerging
Semantic Web — Selected Papers from the First Semantic
Web Working Symposium. IOS Press. 201–214.

Fagin, R.; Kolaitis, P. G.; Popa, L.; and Tan, W.-C. 2004.
Composing schema mappings: Second-order dependencies
to the rescue. In Proc. of the 23rd ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems
(PODS 2004).

Halevy, A.; Ives, Z.; Suciu, D.; and Tatarinov, I. 2003.
Schema mediation in peer data management systems. In
Proc. of the 19th IEEE Int. Conf. on Data Engineering
(ICDE 2003), 505–516.

Halevy, A. Y. 2000. Theory of answering queries using
views. SIGMOD Record 29(4):40–47.

Halevy, A. Y. 2001. Answering queries using views: A
survey. Very Large Database J. 10(4):270–294.

Heflin, J., and Hendler, J. 2001. A portrait of the semantic
web in action. IEEE Intelligent Systems 16(2):54–59.

Hull, R.; Benedikt, M.; Christophides, V.; and Su, J. 2003.
E-services: a look behind the curtain. In Proc. of the 22nd
ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems (PODS 2003), 1–14. ACM Press and
Addison Wesley.

Lenzerini, M. 2002. Data integration: A theoretical
perspective. In Proc. of the 21st ACM SIGACT SIG-
MOD SIGART Symp. on Principles of Database Systems
(PODS 2002), 233–246.

Levesque, H. J., and Lakemeyer, G. 2001. The Logic of
Knowledge Bases. The MIT Press.

Lloyd, J. W. 1987. Foundations of Logic Programming
(Second, Extended Edition). Berlin, Heidelberg: Springer.

Madhavan, J., and Halevy, A. Y. 2003. Composing map-
pings among data sources. In Proc. of the 29th Int. Conf.
on Very Large Data Bases (VLDB 2003), 572–583.

Mattos, N. M. 2003. Integrating information for on demand
computing. In Proc. of the 29th Int. Conf. on Very Large
Data Bases (VLDB 2003), 8–14.

Papazoglou, M. P.; Kramer, B. J.; and Yang, J. 2003. Lever-
aging Web-services and peer-to-peer networks. In Proc. of
the 15th Int. Conf. on Advanced Information Systems Engi-
neering (CAiSE 2003), 485–501.
Serafini, L., and Ghidini, C. 2000. Using wrapper agents to
answer queries in distributed information systems. In Proc.
of the 1st Int. Conf. on Advances in Information Systems
(ADVIS-2000), volume 1909 of Lecture Notes in Computer
Science. Springer.
Subrahmanian, V. S. 1994. Amalgamating knowledge
bases. ACM Trans. on Database Systems 19(2):291–331.
Thakkar, S.; Ambite, J.-L.; and Knoblock, C. A. 2003. A
view integration approach to dynamic composition of Web
services. In Proc. of 2003 ICAPS Workshop on Planning
for Web Services.
Tzitzikas, Y.; Constantopoulos, P.; and Spyratos, N. 2001.
Mediators over ontology-based information sources. In
Proc. of the 2nd Int. Conf. on Web Information Systems En-
gineering (WISE 2001), 31–40.
Ullman, J. D. 1997. Information integration using logi-
cal views. In Proc. of the 6th Int. Conf. on Database The-
ory (ICDT’97), volume 1186 of Lecture Notes in Computer
Science, 19–40. Springer.

