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1. Introduction

BACKGROUND. The main research goal in the field of Knowledge Representa-
tion and Reasoning (KR&R) [Levesque 1984; Hayes 1979] is to define languages
(or formalisms) for describing knowledge in a precise way. The formal description
of such knowledge is usually called a knowledge base (KB), and it is given a formal
semantics that determines the logical consequences of the knowledge base. These
consequences can often be derived automatically by means of various reasoning
algorithms.

Numerous KR&R languages developed thus far can be classified into one of
the following two main families, which have been developed in the past 30 years
largely independently from each other.

(1) The first family encompasses formalisms that try to formally reconstruct pop-
ular but informal approaches, such as frame-based systems and semantic net-
works [Fikes and Kehler 1985; Hayes 1979; Woods and Schmolze 1992].
Description Logics (DLs) are prominent formalisms from this family. Most
DLs can be seen as fragments of first-order logic that provide useful modeling
constructs while keeping the basic reasoning problems decidable and some-
times even tractable [Baader et al. 2007]. The fundamental building blocks of
DL knowledge bases are concepts (which can be seen as unary predicates), roles
(which can be seen as binary predicates), and individuals (which can be seen as
constants), and the relationships between concepts, roles, and individuals can
be precisely described using axioms. The semantics of DL KBs is based on the
open-world assumption of classical logic—that is, a DL knowledge base can
be seen as an incomplete description of the world. DLs are strongly related to
languages for expressing dependencies in relational databases [Calvanese et al.
1998a]. Decidability of DLs is achieved by carefully restricting the syntactic
form of the allowed axioms.

(2) The second family is centered on the idea of modeling knowledge as rules.
Logic programming provides the fundamental rule-based formalism, and it is
closely related to various approaches to nonmonotonic reasoning [Antoniou
1997; Marek and Truszczyński 1993]. Rules are typically implications, and they
are often allowed to contain negation. Although they can be given a standard
first-order semantics, rule-based KBs usually employ a semantics based on a
suitable form of closed-world assumption. Such a semantics allows the rules to
introspect the KB and derive conclusions based on the absence of information
in the KB. Thus, rule-based formalisms are typically nonmonotonic: adding
new information may invalidate previously derived conclusions.

THE PROBLEM: INTEGRATING DLS AND RULES. Both DLs and rules exhibit
certain shortcomings that can be compensated by the features of the other for-
malism. Thus, complex knowledge representation problems often require features
found in both DLs and rules.
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The shortcomings of DLs are twofold. First, the syntactic restrictions used to
ensure decidability of reasoning prevent DLs from axiomatizing non-tree-like re-
lationships [Vardi 1996], such as “an uncle is the brother of one’s father,”1 which
may prevent the derivation of certain desired consequences. Second, as most DLs
are fragments of first-order logic, such DLs do not not provide for introspec-
tion and nonmonotonic inference and thus cannot express the following types of
knowledge:

—they cannot axiomatize database-like integrity constraints (ICs) [Reiter 1992]
(e.g., one cannot express a check whether the information record for each
person occurring in a knowledge base explicitly contains a social security
number);

—they cannot model closed-world reasoning (e.g., one cannot model the fact that
someone is innocent unless proven guilty); and

—they cannot model exceptions [Reiter 1980] (e.g., one cannot express that the
heart is located on the left in most people, but in some people it is on the
right).

The shortcomings of rules are mainly due to the fact that rules typically cannot
reason with unbounded or infinite domains and thus cannot represent many types
of incomplete information. For example, in rule-based formalisms one typically
cannot say that “every person has a father and a mother who are both persons”
without listing all the parents explicitly. As a consequence, rules are typically not
used for reasoning about conceptual schemata but are mainly applied to data-centric
problems such as query answering.

The potential benefits of integrating DLs with rules have been recognized early
on, and a significant body of research has been devoted to solving this problem.
Initial studies, however, have shown that integrating DLs with first-order rules
easily leads to undecidability of the basic reasoning problems [Levy and Rousset
1998] even if both the DL and the rule formalisms alone are decidable. Moreover,
the differences in the semantic foundations of DLs and nonmonotonic rules present
serious hurdles to defining a coherent semantics for the unified formalism. Thus,
the development of a formalism that integrates DLs and rules is a very challenging
goal that has eluded the KR&R community for some time.

EARLY APPROACHES. The idea of adding rules to structured knowledge repre-
sentation systems dates back to the 80’s and the early DL systems such as CLASSIC
[Patel-Schneider et al. 1991], LOOM [MacGregor 1991], and CLASP [Yen et al.
1991]. These systems, however, were typically not based on a coherent seman-
tic framework, and the integration of DLs and rules was procedural. In the 90’s,
attempts were made to study various integration approaches in a formally more rig-
orous way. The first approaches in this direction studied the problem of integrating
DLs with datalog rules [Levy and Rousset 1998; Cadoli et al. 1997; Donini et al.
1998]. These works typically study hybrid knowledge bases consisting of a DL
knowledge base (often called the structural component) and a set of datalog rules
(often called a program). The interaction between the two components is obtained

1The DL SROIQ [Kutz et al. 2006] provides role composition axioms, which can be used to address
some, but by no means all use cases.
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by allowing variables in datalog rules to range over the extensions of concepts and
roles in the DL knowledge base.

RECENT APPROACHES. A renewed interest in the integration of DLs and rules
has been spurred by the research in ontologies and the advent of the Semantic Web.
DLs are playing a central role in this field, as the Web Ontology Language (OWL)—
the ontology modeling language standardized by the World Wide Web Consortium
(W3C)—is based on DLs. Formal semantics and the availability of efficient and
provably correct reasoning tools, such as Pellet [Parsia and Sirin 2004], FaCT++
[Tsarkov and Horrocks 2006], and RACER [Haarslev and Möller 2001], have made
the OWL DL variant of OWL the language of choice for practical applications in
fields as diverse as biology [Sidhu et al. 2005], medicine [Golbreich et al. 2006],
geography [Goodwin 2005], astronomy [Derriere et al. 2006], agriculture [Soergel
et al. 2004], and defense [Lacy et al. 2005]. This extensive practical experience has
confirmed the benefits of using DLs in knowledge representation, but it has also
highlighted the already mentioned limitations of DLs.

In response, several approaches to integration of OWL and rules have been
proposed recently. The Semantic Web Rule Language (SWRL) [Horrocks et al.
2005b] is an extension of OWL with first-order rules that significantly increases the
relational expressivity of OWL. SWRL is trivially undecidable; however, various
syntactic restrictions on the rules can be used to regain decidability [Levy and
Rousset 1998; Motik et al. 2005; Rosati 2006]. Several approaches to integrating
OWL with nonmonotonic rules have been proposed as well [Eiter et al. 2008;
Lukasiewicz 2007; Rosati 2005; de Bruijn et al. 2007a, 2007b].

As mentioned above, integrating OWL with nonmonotonic rules is a nontrivial
task, since the semantics of the two formalisms are quite different. Because of
these difficulties, Kifer et al. [2005] claimed that true rule-based formalisms are
intrinsically incompatible with OWL. As a consequence, they proposed to change
the layering architecture of the Semantic Web: instead of building rules on top of
OWL, rules and OWL should coexist side-by-side with semantic interoperability
grounded in Description Logic Programs (DLP)—a straightforward intersection of
OWL and first-order rules [Grosof et al. 2003]. Furthermore, OWL-Flight [de Bruijn
et al. 2005], the Web Service Modeling Language [de Bruijn et al. 2006], and F-
Logic [Kifer et al. 1995] were proposed as ontology languages based on the rule
paradigm. Horrocks et al. [2005a] criticized these approaches on the grounds that
separating rules from OWL would essentially create two Semantic Webs with little
or no semantic interoperability.

LIMITATIONS OF EXISTING APPROACHES. In order to best use the advantages
of DLs and rules, we argue that a formalism combining them should satisfy the
following important criteria.

—Faithfulness. The integration between DLs and rules should preserve the se-
mantics of both formalisms—that is, the semantics of a hybrid KB in which one
component is empty should be the same as the semantics of the other component.
In other words, the addition of rules to a DL should not change the semantics of
the DL and vice-versa.

—Tightness. Rules should not be layered on top of a DL or vice-versa; rather, the
integration between a DL and rules should be tight in the sense that both the DL
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and the rule component should be able to contribute to the consequences of the
other component.

—Flexibility. The hybrid formalism should be flexible and allow one to view the
same predicate under both open- and closed-world interpretation. This allows
the rules to enrich a DL with nonmonotonic consequences, and a DL to enrich
the rules with the capabilities of taxonomic reasoning.

—Decidability. To obtain a practically useful formalism that can be used in ap-
plications such as the Semantic Web, the hybrid formalism should be at least
decidable, and preferably of low worst-case complexity.

As we will discuss in depth in Section 7, none of the approaches proposed so
far possesses all of these qualities. The approaches that focus on the integration
of DLs with first-order rules (such as those by Levy and Rousset [1998], Donini
et al. [1998], and Horrocks et al. [2005b]) do not extend DLs with capabilities
of nonmonotonic reasoning. Furthermore, the approaches that consider nonmono-
tonic rules are inflexible [Rosati 2005, 2006] or not tight [Eiter et al. 2008], they
use a restricted notion of faithfulness [Lukasiewicz 2007], or their computational
properties are unknown [de Bruijn et al. 2007a].

OUR PROPOSAL AND CONTRIBUTION. In this article, we propose a formalism
of MKNF+ knowledge bases, which allows for a faithful, tight, and flexible integra-
tion of DLs and answer set programming (ASP) [Gelfond and Lifschitz 1991]—a
well-known and popular rule-based formalism with a semantics grounded in cir-
cumscription [McCarthy 1980]. Our formalism is based on the logic of minimal
knowledge and negation as failure (MKNF)—a formalism developed by Lifschitz
[1991] with the goal of unifying most existing approaches to nonmonotonic rea-
soning. We believe that MKNF provides a natural framework for overcoming the
mentioned technical differences in the semantics of DLs and ASP. Our contributions
can be summarized as follows:

—We define a syntax and a model-theoretic semantics for MKNF+ knowledge
bases. Our semantics employs the standard name assumption—a modification
of the semantics of MKNF that is needed in order to make the semantics of the
hybrid formalism intuitive. We show that such a semantics indeed provides for
a faithful, tight, and flexible integration of DLs and ASP.

—We thoroughly study the computational properties of the basic reasoning task for
MKNF+ knowledge bases—that is, the problem of checking whether a ground
atom is true in all models of the knowledge base. Our results can be summarized
as follows:
� We prove that reasoning with MKNF+ knowledge bases is undecidable even

if standard restrictions on the DL knowledge base and the rules are employed.
Therefore, to ensure decidability, we apply the well-known DL-safety restric-
tion and define a suitable notion of knowledge base admissibility.

� We present reasoning algorithms for the cases where ASP rules are unre-
stricted, positive, nondisjunctive positive, stratified, and nondisjunctive.

� We establish precise combined and data complexity bounds for the basic rea-
soning problem. Interestingly, it turns out that our approach to the integration
of DLs and ASP is in most cases computationally “optimal”—that is, the
complexity of reasoning in MKNF+ knowledge bases is computationally not
worse than reasoning in the corresponding DL or answer set program alone.
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—We show that our formalism is quite general and that it can capture many of the
existing combinations of DLs and rules, as well as several existing approaches
to extending DLs with nonmonotonic features.

We focus in this article on description logics mainly due to the context by which
our work is motivated; however, our approach can be used to integrate any first-
order fragment DL with ASP. The semantics of our hybrid formalism does not
rely on the fact that DL is a description logic. Furthermore, we clearly identify the
types of entailments that must be decidable in DL in order to obtain a decidable
hybrid formalism. The complexity of reasoning in the hybrid formalism, however,
depends on the complexity of DL, so we have studied the cases when DL is one
of the DLs commonly used in practice.

ORGANIZATION OF THE ARTICLE. The rest of this article is organized as fol-
lows. In Section 2, we present the basic definitions of DLs, ASP, and MKNF. In
Section 3, we introduce the syntax and the semantics of MKNF+ knowledge bases.
In Section 4, we develop a suitable characterization of the models of MKNF+
knowledge bases that provides the basis for a reasoning algorithm. In Section 5,
we show that reasoning with MKNF+ knowledge bases is undecidable under some
common assumptions; therefore, in Section 6, we present a syntactic restriction that
is sufficient for decidability, and we study the complexity of the resulting formal-
ism. In Section 7, we discuss the related work and show that MKNF+ knowledge
bases can capture many of the existing combinations of DLs and rules.

2. Preliminaries

In this section, we recapitulate the definitions of certain logical formalisms that we
use in the rest of this article.

2.1. DESCRIPTION LOGICS. In this article, we consider an integration of an
arbitrary first-order fragment DL with logic programming. This fragment does not
need to be a description logic; however, our motivation stems from knowledge
representation, so we call DL a description logic nonetheless. We present an
overview of the features common to most DLs; precise definitions can be found in
the literature [Baader et al. 2007].

A DL signature � consists of atomic concepts, atomic roles, and individuals. In
first-order logic, atomic concepts correspond to unary predicates, atomic roles to
binary predicates, and individuals to constants. DLs provide a rich set of construc-
tors used to build complex concepts and roles from simpler ones. Table I shows
the common constructors and the calligraphic letters used to identify them. A DL
knowledge base O consists of a TBox T that describes the general structure of the
world and an ABox A that describes particular objects in the world; both T and A
must be finite. Table I summarizes the types of TBox and ABox axioms commonly
found in DLs. The ABox axioms are usually called assertions. With |O|we denote
the number of symbols needed to encode O on a tape of a Turing machine.

A DL knowledge base O is given semantics by interpreting it in a first-order
structure—usually called an interpretation—where concepts correspond to unary
predicates and roles correspond to binary predicates. More precisely, an interpre-
tation I consists of a domain set�I and an interpretation function ·I that interprets
(i) each individual a as some element aI ∈ �I , and (ii) concepts and roles as shown
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TABLE I. COMMON DL CONSTRUCTS AND THEIR SEMANTICS

Letters Syntax Name Semantics
Concepts and Roles

ALC

� Top concept �I = �I

⊥ Bottom concept ⊥I = ∅
A Atomic concept AI ⊆ �I

R Atomic role RI ⊆ �I ×�I

¬C Concept negation �I \ C I

C 	 D Concept intersection C I ∩ DI

C � D Concept union C I ∪ DI

∃R.C Existential quantifier {s | ∃t ∈ �I : 〈s, t〉 ∈ RI ∧ t ∈ C I }
∀R.C Universal quantifier {s | ∀t ∈ �I : 〈s, t〉 ∈ RI → t ∈ C I }

I R− Inverse role {〈t, s〉 | 〈s, t〉 ∈ RI }
O {a} Nominals {aI }
N ≥ n R Unqualified number {s | �{t | 〈s, t〉 ∈ RI } ≥ n}

≤ n R restrictions {s | �{t | 〈s, t〉 ∈ RI } ≤ n}
Q ≥ n R.C Qualified number {s | �{t | 〈s, t〉 ∈ RI ∧ t ∈ C I } ≥ n}

≤ n R.C restrictions {s | �{t | 〈s, t〉 ∈ RI ∧ t ∈ C I } ≤ n}
TBox Axioms

C � D Concept inclusion C I ⊆ DI

H R � S Role inclusion RI ⊆ SI

S Trans(R) Transitivity ∀s, t, u ∈ �I : 〈s, t〉 ∈ RI ∧ 〈t, u〉 ∈ RI → 〈s, u〉 ∈ RI

R R ◦ S � T Role composition ∀s, t, u ∈ �I : 〈s, t〉 ∈ RI ∧ 〈t, u〉 ∈ SI → 〈s, u〉 ∈ T I

ABox Axioms

C(a) Concept assertion aI ∈ C I

R(a, b) Positive role assertion 〈aI , bI 〉 ∈ RI

¬R(a, b) Negative role assertion 〈aI , bI 〉 �∈ RI

a ≈ b Equality assertion aI = bI

a �≈ b Inequality assertion aI �= bI

in Table I. An interpretation I is a model of O if it satisfies all TBox and ABox
axioms as shown in the bottom part of the table. Furthermore, O entails an axiom
α, written O |= α, if α is true in all models of O. It is well known that O can
be translated into a first-order formula π (O) that is satisfied in exactly the same
models as O [Baader et al. 2007]; the translation of nominals and number restric-
tions requires counting quantifiers, which can be represented in first-order logic
using the equality predicate ≈. The basic reasoning problem for O is checking
its satisfiability—that is, checking whether O admits a model. Many DL-based
applications also use the entailment checking problem, which is the problem of
checking whether an axiom is entailed by a DL knowledge base. If the axiom
is of the form C � D with C and D concepts, the problem is called subsump-
tion checking, and if the axiom is an assertion, the problem is called assertion
checking.

Conjunctive queries were proposed as an expressive query language for DLs
[Calvanese et al. 1998b]. For x and y disjoint vectors of distinguished and nondis-
tinguished variables, respectively, a conjunctive query Q(x) is a finite formula of
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the form ∃y : A1 ∧ · · · ∧ An where each Ai is a function-free first-order atom over
predicates and constants from � and the variables from x ∪ y. If x is empty, the
conjunctive query is said to be Boolean. For a a vector of as many constants as
there are variables in x , with Q(a) we denote the result of replacing in Q(x) each
xi ∈ x with the corresponding ai ∈ a. We say that a is an answer to Q(x) over a
DL knowledge base O, written O |= Q(a), if Q(a) is true in every model of O;
furthermore, query answering is the problem of checking whether a is an answer
to Q(x). Decidability and complexity bounds of answering conjunctive queries are
known for many DLs [Glimm et al. 2007; Calvanese et al. 1998b, 2006; Ortiz et al.
2008; Krötzsch et al. 2008a].

As an example, consider the following DL knowledge base O about human
anatomy. Axiom (1) states that the heart of each person is either on the left or
on the right, and axiom (2) states that the heart cannot be both on the left and
on the right. Furthermore, axiom (3) states that each person has a spinal column,
and axiom (4) states that things that have a spinal column are vertebrates. Fi-
nally, axiom (5) states that Bob is an instance of Person. Then we can conclude
O |= Vertebrate(Bob)—that is, that Bob is an instance of Vertebrate. In fact, we
also haveO |= Person � Vertebrate—that is, we can conclude that all people (even
those not explicitly mentioned in O) are vertebrates. Finally, for a Boolean con-
junctive query Q = ∃x : SpinalColumn(x), we have O |= Q—that is, the axioms
in O allow us to conclude that at least one spinal column exists even if we do not
have an explicit name for it.

Person � HeartOnLeft � HeartOnRight(1)
HeartOnLeft 	 HeartOnRight � ⊥(2)

Person � ∃has.SpinalColumn(3)
∃has.SpinalColumn � Vertebrate(4)

Person(Bob)(5)

2.2. ANSWER SET PROGRAMMING. Answer set programming (ASP) [Gelfond
and Lifschitz 1991] is nowadays one of the most popular nonmonotonic rule-based
formalisms, mainly due to the availability of efficient answer set solvers such as
DLV [Leone et al. 2006] and Smodels [Syrjänen and Niemelä 2001]. A literal is
a formula of the form A or ¬A, where A is a function-free first-order atom. The
negation¬ is called classical (or sometimes also strong), and it is different from the
nonmonotonic negation as failure, which is written as not. An answer set program
P is a finite set of rules of the form

H1 ∨ . . . ∨ Hk ← B1, . . . , Bm, not Bm+1, . . . , not Bn(6)

where Bi and Hj are body and head literals, respectively. A rule is safe if each
variable in the rule occurs in an atom Bi for some 1 ≤ i ≤ m; unless otherwise
mentioned, we assume that all rules are safe. A rule is positive if m = n.2 A rule
with k = 0 is often written as having the single head literal false. Finally, a rule
with n = 0 is often called a fact, and the← symbol is typically omitted in such

2Note that the term “positive” refers to the absence of nonmonotonic negation and not of the classical
negation. Such usage of terminology is common in answer set programming, as literals can be
understood as being “atomic” from the logical point of view.
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cases. A rule is ground if it does not contain variables. These notions are extended
to programs in the obvious way.

Roughly speaking, the semantics of ASP is obtained from the standard first-
order semantics by considering only Herbrand models [Fitting 1996] (i.e., models
in which ground terms are interpreted by themselves) and by considering only
those models that contain a “minimal” amount of information necessary to satisfy
the rules. We next recapitulate the formal definitions.

The Herbrand base of a ground program P is the set HBP of all ground literals
occurring in P . An interpretation I for P is a consistent subset of HBP—that is, I
is not allowed to contain both A and¬A for some ground atom A. An interpretation
I satisfies a positive ground rule r of the form (6), written I |= r , if Bi ∈ I for
each 1 ≤ i ≤ m implies Hj ∈ I for some 1 ≤ j ≤ k. Let P be a positive ground
program. Then, I |= P if and only if I |= r for each r ∈ P; furthermore, I is an
answer set of P if I |= P and no interpretation I ′ � I exists such that I ′ |= P .

Let P be a ground program in which the rules are allowed to contain not. The
reduct of P with respect to an interpretation I is the positive ground program P I

obtained from P by deleting each rule of the form (6) such that Bi ∈ I for some
m + 1 ≤ i ≤ n, and by deleting all not B j in the remaining rules. An interpretation
I is an answer set of P if I is an answer set of P I .

The grounding of a rule r with respect to a set of constants C is the set of rules
gr(r, C) obtained by replacing in r all variables with the constants from C in all
possible ways. The grounding of a program P with respect to a set of constants C
is defined as gr(P, C) =⋃

r∈P gr(r, C). An interpretation I is an answer set of a
(not necessarily ground) program P if and only if I is an answer set of gr(P, OP ),
where OP is the set of all constants occurring in P .

As an example, consider the following programP that describes common knowl-
edge about people. Rules (7)–(8) define an integrity constraint that checks whether
each person has an explicitly specified social security number (SSN). One might
try to express this statement by the DL axiom Person � ∃hasSSN.�; however, the
latter axiom merely says that each each person has some (potentially unknown)
SSN. In contrast, rules (7)–(8) behave as checks, and such checks cannot be ex-
pressed in first-order logic. Rule (9) is a default rule, which states that, unless the
contrary can be proved, vertebrates have their hearts on the left.

SSN OK(x)← hasSSN(x, y)(7)
false← Person(x), not SSN OK(x)(8)

HeartOnLeft(x)← Vertebrate(x), not¬HeartOnLeft(x)(9)

If we extend P with a fact Verterbrate(Peter), then (9) derives HeartOnLeft(Peter).
If, in addition, we explicitly state that Peter does not have his heart on the left—
that is, if we add the fact ¬HeartOnLeft(Peter)—then the default rule does not
apply and we do not derive HeartOnLeft(Peter). Furthermore, if we provide a fact
Person(Peter) without any additional information, then (7)–(8) derive a contradic-
tion; we can prevent this by providing a fact such as hasSSN(Peter, ssn1).

2.3. MINIMAL KNOWLEDGE AND NEGATION AS FAILURE. The logic of minimal
knowledge and negation as failure (MKNF) [Lifschitz 1991] and the closely related
logic of minimal belief and negation as failure (MBNF) [Lifschitz 1994] have been
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TABLE II. SATISFACTION OF A CLOSED MKNF FORMULA IN AN MKNF
STRUCTURE

(I, M, N ) |= true for each triple (I, M, N )
(I, M, N ) |= P(t1, . . . , tn) iff 〈t I

1 , . . . , t I
n 〉 ∈ P I

(I, M, N ) |= ¬ϕ iff (I, M, N ) �|= ϕ
(I, M, N ) |= ϕ1 ∧ ϕ2 iff (I, M, N ) |= ϕ1 and (I, M, N ) |= ϕ2

(I, M, N ) |= ∃x : ϕ iff (I, M, N ) |= ϕ[nα/x] for some α ∈ �
(I, M, N ) |= K ϕ iff (J, M, N ) |= ϕ for all J ∈ M
(I, M, N ) |= not ϕ iff (J, M, N ) �|= ϕ for some J ∈ N

proposed as unifying frameworks for different nonmonotonic formalisms, such as
default logic, autoepistemic logic, and logic programming.

Let � = (�c, � f , �p) be a first-order signature, where �c is a set of con-
stants, � f is a set of function symbols, and �p is a set of predicates contain-
ing the binary equality predicate ≈. The syntax of MKNF formulae over �
is defined by the following grammar, where ti are first-order terms and P is a
predicate:

ϕ← true | P(t1, . . . , tn) | ¬ϕ | ϕ1 ∧ ϕ2 | ∃x : ϕ | K ϕ | not ϕ

Formulae of the form P(t1, . . . , tn) are called first-order atoms. Furthermore,
formulae ϕ1 ∨ ϕ2, ∀x : ϕ, ϕ1 ⊃ ϕ2, ϕ1 ≡ ϕ2, false, t1 ≈ t2, and t1 �≈ t2 are
syntactic shortcuts for the formulae ¬(¬ϕ1 ∧ ¬ϕ2), ¬(∃x : ¬ϕ), ¬ϕ1 ∨ ϕ2,
(ϕ1 ⊃ ϕ2) ∧ (ϕ2 ⊃ ϕ1), ¬true, ≈(t1, t2), and ¬(t1 ≈ t2), respectively. First-order
atoms of the form t1 ≈ t2 and t1 �≈ t2 are called equalities and inequalities, respec-
tively, and have a predefined interpretation [Fitting 1996]. A formula of the form
K ϕ is a modal K-atom, and a formula of the form not ϕ is a modal not-atom;
modal K- and not-atoms are modal atoms. An MKNF formula ϕ is closed if it has
no free variables, and ϕ is modally closed if it is closed and all modal operators are
applied in ϕ only to closed subformulae. With ϕ[t1/x1, . . . , tn/xn] we denote the
result of simultaneously replacing in ϕ all free occurrences of the variables xi with
the terms ti . An MKNF theory is a countable set of closed MKNF formulae.

Let � be a signature and � a nonempty set called universe. Just like in first-
order logic, a first-order interpretation I over � and � assigns an object aI ∈ �
to each constant a ∈ �c, a function f I : �n →� to each n-ary function symbol
f ∈ � f , and a relation P I ⊆ �n to each n-ary predicate P ∈ �p, and it interprets
the predicate ≈ as equality—that is, for α, β ∈ �, we have 〈α, β〉 ∈ ≈I iff α = β.
Unlike in standard first-order logic, for each element α ∈ �, the signature � is
required to contain a special constant nα—called a name—such that nI

α = α. The
interpretation of a variable-free term t = f (s1, . . . , sn) is defined recursively as
t I = f I (s I

1 , . . . , s I
n ).

The semantics of an MKNF formula over a signature � (henceforth considered
implicit in all definitions) is defined as follows: An MKNF triple over a universe�
is a triple (I, M, N ), where I is a first-order interpretation over � and �, and M
and N are nonempty sets of first-order interpretations over � and �. Satisfiability
of a closed MKNF formula in (I, M, N ) is defined as shown in Table II.

An MKNF interpretation M over a universe � is a nonempty set of first-order
interpretations over�. For a closed MKNF formula ϕ, we say that M is an S5 model
of ϕ, written M |= ϕ, if (I, M, M) |= ϕ for each I ∈M . As its name suggests, S5
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models of ϕ are obtained by interpreting ϕ as a first-order modal formula in the
modal logic S5 while taking not to be a shortcut for ¬K.3

The nonmonotonic semantics of MKNF is obtained by preferring some S5
models over others: an MKNF interpretation M over � is an MKNF model of ϕ
if (i) M is an S5 model of ϕ, and (ii) for each set of first-order interpretations M ′
over � such that M ′ � M , we have (I ′, M ′, M) �|= ϕ for some I ′ ∈M ′.

An MKNF formula ϕ is MKNF satisfiable if an MKNF model of ϕ exists;
otherwise, ϕ is MKNF unsatisfiable. Furthermore, ϕ MKNF entails ψ , written
ϕ |=MKNF ψ , if M |= ψ for each MKNF model M of ϕ. The S5 (un)satisfiability
and entailment (written ϕ |=S5 ψ), are defined analogously by considering S5
instead of MKNF models.

The definitions of models, (un)satisfiability, and entailment are extended to
MKNF theories as usual; for example, an MKNF interpretation M is an S5 model
of an MKNF theory T , written M |= T , if M |= ϕ for each ϕ ∈ T .

Standard equivalences of first-order logic, such as de Morgan laws, are applicable
to MKNF. Furthermore, let ϕ and ψ be arbitrary MKNF formulae, and let κ be a
formula in which all first-order atoms occur within the scope of a modal operator.
By the properties of S5, the formulae on the left- and the right-hand side of⇔ in
the following table have the same truth values in any MKNF triple.

K(ϕ ∧ ψ) ⇔ K ϕ ∧K ψ not(ϕ ∧ ψ) ⇔ not ϕ∨not ψ

K(κ ∨ ϕ) ⇔ κ ∨K ϕ not(κ ∨ ϕ) ⇔ ¬κ ∧ not ϕ

K(∀x : ϕ) ⇔ ∀x : K ϕ not(∀x : ϕ) ⇔ ∃x : not ϕ

Hence, we can replace any subformula of an MKNF formula of the form on the
left with the formula on the right and vice-versa.

Each closed MKNF formula ϕ clearly has the same MKNF models as K ϕ;
hence, for a closed MKNF formula ψ , we have ϕ |=MKNF ψ iff K ϕ |=MKNF ψ iff
ϕ |=MKNF K ψ . Furthermore, if all first-order atoms occur in ψ within the scope of
a modal operator, then ϕ |=MKNF ψ iff ϕ ∧ ¬ψ ′ is MKNF unsatisfiable, where ψ ′ is
obtained by replacing in ψ each occurrence of K with¬not [Rosati 2003]. Finally,
if σ is a first-order subformula of ϕ, then without affecting MKNF satisfiability
of ϕ we can introduce a fresh predicate Q, replace the occurrences of σ in ϕ with
Q(x), and add a definition ∀x : Q(x) ≡ σ , where x are the free variables of σ . This
equivalence does not necessarily hold if σ contains modal operators [Lifschitz
1991].

Answer set programming can be embedded into MKNF. An ASP rule r of the
form (6) with free variables x is transformed into an MKNF formula π (r ) as
follows:

π (r ) = ∀x :

⎡
⎣ ∧

1≤i≤m

K Bi ∧
∧

m+1≤ j≤n

not B j ⊃
∨

1≤�≤k

K H�

⎤
⎦(10)

3 In first-order modal logics, possible worlds corresponds to first-order interpretations; furthermore,
since each world is accessible from any other world in S5, a Kripke structure can be represented as a
set M of first-order models.
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An answer set program P is translated into the following MKNF formula:

π (P) =
[∧

r∈P
π (r )

]
∧ UNA� ∧ RDA�(11)

UNA� =
∧

a,b∈�c and a �=b

K(a �≈ b)(12)

RDA� =
∧

a ∈�c

∃x : K(x ≈ a)(13)

The MKNF models of π (P) encode the answer sets of P: for each answer set I of
P , there is an MKNF model M of π (P) such that M = {J | J |= I }; conversely,
for each MKNF model M of π (P), the set of ground literals I = {L | M |= K L}
is an answer set of P . Lifschitz [1991] has shown this equivalence for propositional
answer set programs; furthermore, by relying on the results by Lifschitz [1994], it
is not difficult to see that the relationship holds for programs with variables as well
if one additionally axiomatizes the unique name assumption (UNA�) and ensures
that each constant a is interpreted rigidly (RDA�).

2.4. COMPLEXITY CLASSES. We use standard definitions of the complexity
classes PTime, NP, and coNP [Papadimitriou 1993]. Furthermore, the classes
NEXPTIME and N2EXPTIME contain decision problems that can be solved by a
nondeterministic Turing machine in single and double exponential time, respec-
tively. The complexity class DP contains all decision problems that can be solved
by solving one decision problem in NP and one decision problem in coNP. For
complexity classes C and E , with EC we denote the class of decision problems that
can be solved by a Turing machine running in E and using an oracle for decision
problems in C. The polynomial hierarchy is defined inductively as follows:

�
p
0 = �

p
0 =

p
0 = PTime, �

p
k+1= PTime�

p
k , �

p
k+1=NP�

p
k , 

p
k+1= co�

p
k+1.

3. A Framework for Combining Description Logics with Rules

In this section, we define the syntax and the semantics of MKNF+ knowledge
bases, present an example, and discuss some of their semantic properties. We start,
however, with a simple example that motivates our work. Consider a DL knowledge
base O consisting of axioms (1)–(4) and ABox facts (14)–(17), and an answer set
program P consisting of rules (7)–(9).

Person(Peter)(14)
HeartOnRight(Peter)(15)

Person(Paul)(16)
hasSSN(Paul, ssn1)(17)

We now present several inferences that one might intuitively expect from a hybrid
formalism integrating O and P .

DLs can reason about objects not explicitly mentioned in either O or P , and this
capability should be preserved. Thus, we should be able to derive from axioms (3)
and (4) that Peter and Paul are instances of Vertebrate. Note that axiom (3) contains
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an existential quantifier, so we need standard open-domain reasoning of first-order
logic to draw the desired conclusion.

Nonmonotonic rules should provide a way for expressing integrity constraints
over the DL knowledge base and thus allow for checking whether all informa-
tion has been entered properly. For example, rules (7)–(8) express a constraint
requiring that the SSN must be known for each object in the knowledge base.
Axiom (17) specifies the SSN of Paul, but there is no such axiom for Peter, so
the integrity constraint encoded by rules (7)–(8) should detect an inconsistency for
Peter.

Rule (9) can be understood as a default rule. Both Peter and Paul are instances
of Vertebrate due to O, so (9) should be applicable to both Peter and Paul. Fur-
thermore, axioms (14)–(17) specify no information about the location of the heart
of Paul, so we expect to derive by (9) that his heart is on the left; in contrast,
(15) explicitly says that the heart of Peter is on the right, so rule (9) should not
“fire.”

As this example demonstrates, our hybrid formalism should enable a mix of
open- and closed-world reasoning, which is nontrivial to realize. Furthermore,
our goal is to obtain a general framework for integrating DLs with both first-
order and nonmonotonic rules that is capable of generalizing many of the existing
proposals.

MKNF [Lifschitz 1991] has been specifically designed to capture first-order logic
as well as many existing approaches to nonmonotonic reasoning. A DL knowledge
base can straightforwardly be embedded into MKNF, and the same is the case for
first-order rules. Furthermore, as shown in Section 2.3, ASP can be embedded into
MKNF in a simple way as well. Therefore, it is natural to try to use MKNF as a
semantic framework for an integration of DLs and ASP.

We proceed as follows. In Section 3.1, we argue that the semantics of MKNF as
defined by Lifschitz [1991] must be extended with the standard name assumption to
obtain the desired consequences for our hybrid formalism. Next, in Section 3.2, we
introduce MKNF+ knowledge bases—a very general combination of a first-order
fragment and rules. In Section 3.3, we show that the syntax of the formalism can
be simplified without losing expressivity. In Section 3.4, we discuss a nonobvious
interaction between modal atoms in the rules and existential quantifiers in the DL
component. Finally, in Section 3.5, we present a nontrivial example.

3.1. STANDARD NAME ASSUMPTION. Roughly speaking, a nonmonotonic rule
in our formalism will be of the form (18), and it will be given semantics by
translating it into the MKNF formula (19).

K H1 ∨ . . . ∨K Hk ← K B1, . . . , K Bm, not Bm+1, . . . , not Bn(18)
∀x : K H1 ∨ . . . ∨K Hk ⊂ K B1 ∧ · · · ∧K Bm ∧ not Bm+1 ∧ · · · ∧ not Bn(19)

The semantics of MKNF as defined by Lifschitz [1991], however, exhibits two
undesirable properties that make such a straightforward definition undesirable.

The first problem arises because the semantics of MKNF considers arbitrary
universes. Let ϕ = ϕ1 ∧ ϕ2, where ϕ1 = K A(a) and ϕ2 = not A(b) ⊃ false. The
formula ϕ2 can be understood as “it is an error not to derive A(b),” and the formula
ϕ1 provides no evidence that A(b) is derivable; therefore, one might expect ϕ to be
unsatisfiable similarly as it would be the case in ASP. The universe � of MKNF
interpretations is, however, not fixed, so we can consider a universe� that contains
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only one object. Then, both a and b must be interpreted as the same objects, so ϕ
is satisfied. Hence, instead of being unsatisfiable, we have ϕ |=MKNF a ≈ b, which
is not intuitive: we want to interpret ϕ2 as in ASP—that is, as a constraint that only
affects the consistency of ϕ and has no other side-effects. To avoid such problems,
the semantics of ASP is defined with respect to Herbrand models, in which each
constant is interpreted by itself.

The second problem is due to the semantics of quantification. Let ϕ1 = K A(a)
and ϕ2 = ∃x : K A(x). Intuitively, we expect ϕ1 |=MKNF ϕ2 to hold; however, under
the original semantics of MKNF, this is not the case. Consider an MKNF interpre-
tation M such that {I1, I2} ⊆ M where I1 is a first-order interpretation in which
a is interpreted as a name α1 and I1 |= A(α1), and I2 is a first-order interpreta-
tion in which a is interpreted as some other name α2 and I2 |= A(α2). Clearly,
M |= ϕ1. For M |= ϕ2 to hold, we should find a name α such that I |= A(α)
for each I ∈ M . If we choose α = α1, then I2 �|= A(α) and, similarly, if we
choose α = α2, then I1 �|= A(α); hence, M �|= ϕ2. The problem arises because a
can be mapped in different interpretations in M to different domain objects. This
can be corrected if we make a rigid using the MKNF formula ∃x : K(x ≈ a):
this ensures that a is interpreted in all first-order interpretations in M as the
same name α, so ϕ1 ∧ ∃x : K(x ≈ a) |=MKNF ϕ2. This observation also explains
why RDA� is needed in the encoding of ASP into MKNF in Section 2.3. Con-
sider the answer set program P = {A(a), false← A(x)}; clearly, P does not have
an answer set. Without RDA� , the program P corresponds to the MKNF for-
mula K A(a) ∧ ∀x : [K A(x) ⊃ false], which is MKNF equivalent to the formula
ψ = K A(a) ∧ ¬[∃x : K A(x)] = ϕ1 ∧ ¬ϕ2. Thus, ψ is MKNF satisfiable; how-
ever, ψ ∧ RDA� is MKNF unsatisfiable, which gives us the desired behavior.

The first problem could seemingly be solved by applying the unique name as-
sumption (UNA)—that is, by including a fact K(a �≈ b) for each pair of constants
such that a �= b. Such a semantics, however, is incompatible with first-order frag-
ments that do not require UNA; therefore, such a solution is unsatisfactory as it
may require a change to the semantics of DL. Furthermore, UNA does not address
the second problem, so we adopt a different solution.

Definition 3.1 (Standard Name Assumption). A first-order interpretation I
over a signature � employs the standard name assumption if

(1) the universe� of I contains all constants of � and a countably infinite number
of additional constants called parameters,

(2) t I = t for each ground term t constructed using the function symbols from �
and the constants from �, and

(3) the predicate ≈ is interpreted in I as a congruence relation—that is, it is
reflexive, symmetric, transitive, and it allows the replacement of equals by
equals [Fitting 1996].

Property (1) of Definition 3.1 avoids the first problem mentioned previously
by fixing the universe �. Property (2) avoids the second problem by requir-
ing each constant to be rigid. Together, (1)–(2) make each model I equal to a
Herbrand model with an infinite supply of constants. This, however, produces
a nonstandard semantics that is not equivalent to first-order logic. For example,
formula ϕ = ∀x : (x ≈ a) is unsatisfiable if we require (1)–(2) to hold in each in-
terpretation and additionally interpret ≈ as true equality: (1) requires the universe
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� to be infinite, while ϕ requires it to contain at most one element. Property (3)
remedies this problem by treating ≈ not as true equality, but as a congruence rela-
tion. Formula ϕ is satisfied in an interpretation that satisfies (1)–(3): the universe
� is infinite, but α ≈ β will be true in the interpretation for all pairs of elements
α, β ∈ �. In the following sections, we implicitly consider only MKNF interpre-
tations that satisfy the standard name assumption—that is, we always apply the
standard name assumption in addition to the definitions presented in Section 2.3.

PROPOSITION 3.2. Each first-order formula is satisfiable if and only if it is
satisfiable in a model that employs the standard name assumption.

PROOF. An equality-free first-order formula is satisfiable in an arbitrary model
if and only if it is satisfiable in a Herbrand model with an infinite supply of constants
not occurring in the formula [Fitting 1996, Theorem 5.9.4]. Hence, without equality
we cannot distinguish satisfiability in arbitrary models from satisfiability only in
Herbrand models. Furthermore, a first-order formula with equality is satisfiable in
a model with true equality if and only if it is satisfiable in a model where ≈ is
interpreted as a congruence relation [Fitting 1996, Theorem 9.3.9].

By Proposition 3.2, we cannot distinguish consequences that first-order formulae
have under the standard first-order semantics and the standard name assumption.
Technically speaking, all first-order inferences that we mention in the following
sections use the standard name assumption; however, we can consider them to be
ordinary first-order inferences, as we cannot tell the difference.

The standard name assumption clearly makes all constants rigid, thus achieving
the effect of the formula RDA� from Section 2.3. The standard name assumption
does not achieve the effect of UNA� from Section 2.3; however, it makes con-
stants “unique by default.” Consider the formula ϕ = not(a ≈ b) ⊃ K Q(c). Due
to Property (3) and the fact that ≈ is a standard first-order predicate, the extension
of ≈ is minimized just like for any other predicate. Thus, a and b are assumed
to be different because there is no evidence to the contrary, and ϕ |=MKNF K Q(c).
This, however, does not prevent us from explicitly making a and b equal. If P is
an answer set program that does not contain equality in the head of a rule (which is
a standard restriction in ASP), then P |= A if and only if

∧
r∈P π (r ) |=MKNF K A,

where π is the transformation from Section 2.3—that is, we do not need to include
RDA� and UNA� in the translation.

3.2. MKNF+ KNOWLEDGE BASES. In order to capture several existing combi-
nations of DLs and rules, we define MKNF+ knowledge bases as a very general
formalism. The generality is achieved in the following two ways.

—In order to capture languages such as EQL-Lite(Q) [Calvanese et al. 2007b],
dl-programs by Eiter et al. [2008], and dl-programs by Lukasiewicz [2007], we
generalize the notion of literals in the rules and allow them to be arbitrary first-
order formulae. For example, we allow literals to be conjunctive queries over
DL.

—In order to capture first-order combinations of DLs and rules, as well as ap-
proaches that allow for open- and closed-world reasoning in the rules such as
DL+log [Rosati 2005], we allow the rules to contain a mix of modal and
nonmodal atoms.
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All definitions in this and the following sections are parameterized by a signature
� that contains the equality predicate ≈.

Definition 3.3 (Syntax). A generalized atom is a first-order formula. A gener-
alized atom is ground if it does not contain free variables.4 A generalized atom ξG
is a grounding of a generalized atom ξ if ξG is obtained from ξ by replacing its free
variables with constants. A generalized atom base B is a set of generalized atoms
such that ξ ∈ B implies ξG ∈ B for each grounding ξG of ξ .

An MKNF+ atom over B is either a nonmodal atom of the form ξ , a K-atom of
the form K ξ , or a not-atom of the form not ξ , where ξ ∈ B. The K- and not-atoms
are collectively called modal atoms. An MKNF+ rule r over B is a formula of the
following form, where each Hi is a nonmodal or a K-atom over B and each Bi is
either a nonmodal, a K-, or a not-atom over B.

H1 ∨ . . . ∨ Hm ← B1, . . . , Bn(20)

As usual, the set of atoms head(r ) = {Hi | 1 ≤ i ≤ m} is called the head of r , and
the set of atoms body(r ) = {Bi | 1 ≤ i ≤ n} is called the body of r . If m = 1, the
rule is nondisjunctive; if n = 0, it is a fact; and if it does not contain not-atoms,
it is positive. The empty head (m = 0) is written as false. A rule is safe if each
variable that occurs free in some rule atom also occurs free in a body K-atom. A
program P over B is a finite set of MKNF+ rules. The size of P , written |P|, is the
number of symbols needed to encode P on a tape of a Turing machine.

Let DL be a description logic and let B be a generalized atom base. An MKNF+
knowledge base overDL andB is a pairK = (O,P), whereO ∈ DL is a DL knowl-
edge base and P is a program over B. The size of K is defined as |K| = |O| + |P|.
Given K, with OK we denote the set of all constants occurring in K; if K does not
contain constants, then OK contains one arbitrary constant.

In the rest of this article, all references to MKNF+ knowledge bases are assumed
to be implicitly parameterized by a description logic DL and a generalized atom
base B. To obtain a useful formalism in practice, B should at least include the
standard function-free first-order atoms of the form P(t1, . . . , tn). Furthermore, to
capture answer set programming, B should include negative atoms of the form
¬P(t1, . . . , tn). It is also useful to extend B with conjunctive queries over DL, as
this allows MKNF+ rules to be used as an expressive query language for DL (see
Section 7.6 for more information). These three types of generalized atoms are most
likely to be relevant for practical usage.

We next define the semantics of MKNF+ knowledge bases.

Definition 3.4 (Semantics). Let K = (O,P) be an MKNF+ knowledge base
and let π (O) be the translation of O into a formula of first-order logic with equality.
(Such translations are known for most DLs [Baader et al. 2007].) We extend π to
a rule r of the form (20) with the free variables x and to K as follows.

π (r ) = ∀x : (B1 ∧ · · · ∧ Bn ⊃ H1 ∨ · · · ∨ Hm)
π (P) =∧

r∈P π (r )
π (K) = K π (O) ∧ π (P)

4 Note that a ground generalized atom can contain variables bound by a quantifier.
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An MKNF+ knowledge base Kis MKNF satisfiable if and only if an MKNF
model of π (K) exists. Furthermore, K MKNF entails an MKNF formula ψ , written
K |=MKNF ψ , if and only if π (K) |=MKNF ψ .

To simplify the notation, we usually identify an MKNF knowledge base K, a DL
knowledge baseO, a programP , and a rule r with the corresponding formula π (K),
π (O), π (P), and π (r ), respectively. Therefore, instead of writing, say, M |= π (K),
whenever no confusion can arise we simply write M |= K.

For K = (O,∅) and ψ a closed first-order formula, clearly K |=MKNF ψ iff
O |= ψ . Furthermore, for K = (∅,P), A a ground literal, and P ′ the answer
set program corresponding to P as described in Section 2.2, K |=MKNF A if and
only if P ′ |= A under the answer set semantics. Hence, the semantics of MKNF+
knowledge bases is faithful with respect to the criteria put forth in the introduction.

3.3. NONMODAL ATOMS IN RULES. As we show in Section 7, the ability of
MKNF+ rules to incorporate both modal and nonmodal atoms is necessary to
capture several existing approaches to integration of DLs and rules. This generality,
however, adds a degree of complexity to our formalism because it mixes the first-
order with the nonmonotonic aspects of reasoning. We next introduce a restricted
version of our formalism in which the two types of concerns are more clearly
separated.

Definition 3.5 (MKNF Knowledge Bases). MKNF rules and MKNF knowl-
edge bases are defined as in Definition 3.3 with the difference that each atom in
each rule must be a K- or not-atom.

Each MKNF+ knowledge base can be transformed into an MKNF knowledge
base, provided that we extend the generalized atom base appropriately.

PROPOSITION 3.6. For a generalized atom base B, let B′ be the smallest gen-
eralized atom base such that, for each nonempty finite subset {ϕ1, . . . , ϕn} ⊆ B,
each formula ψ of the form (¬)ϕ1 ∨ . . . ∨ (¬)ϕn, and each not necessarily proper
and possibly empty subset y of the free variables of ψ , we have ∀y : ψ ∈ B′.

For each MKNF+ knowledge base K+ = (O,P+) over DL and B, an MKNF
knowledge base K = (O,P) over DL and B′ exists such that K+ and K have
exactly the same MKNF models.

PROOF. By the identities listed in Section 2.3, π (K+) = KO ∧∧
r∈P+ π (r )

is MKNF equivalent to the formula K[KO ∧∧
r∈P+ π (r )]; the latter is in turn

MKNF equivalent to the formula KO ∧∧
r∈P+ K π (r ), where r denotes rules of

the following form containing both modal and nonmodal atoms:

∨
Hi ∨

∨
K Hj ←

∧
Bk ∧

∧
K Bm ∧

∧
not Bn
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For each such r , let y be the list of variables that occur only in Hi and Bk , and let
x be the list of all other variables in r . Then, the following equivalences hold.

K π (r ) = K∀x, y :
{∨

Hi ∨
∨

K Hj ⊂
∧

Bk ∧
∧

K Bm ∧
∧

not Bn

}
⇔

∀x : K ∀y :
{∨

Hi ∨
∨

K Hj ⊂
∧

Bk ∧
∧

K Bm ∧
∧

not Bn

}
⇔

∀x :
{

K
(
∀y :

∨
Hi ∨

∨
¬Bk

)
∨

∨
K Hj ⊂

∧
K Bm ∧

∧
not Bn

}
We have thus transformed an MKNF+ knowledge base over DL and B into an
MKNF knowledge base over DL and B′ while preserving the MKNF models.

Intuitively, Lemma 3.6 allows us to “pull” the first-order aspects of MKNF+
rules into the modal atoms; this is possible if we extend the set of modal atoms
from B to B′. In this way, we can cleanly delineate first-order from nonmonotonic
reasoning: the former is restricted to the formulae in B′ and DL, and the latter
is restricted to the modal MKNF rules. This allows us to isolate the influence of
either component on the computational properties of reasoning. For example, in
Section 6, we establish decidability of reasoning with MKNF knowledge bases
by making only very general assumptions on the properties of reasoning in the
first-order component.

We finish this section with a brief discussion of why MKNF is more suitable for
our purposes than the closely related logic MBNF [Lifschitz 1994]. The latter logic
differs from MKNF in the definition of models: an MBNF model is a pair (I, M)
where I is a first-order interpretation and M is a set of first-order interpretations
such that (I, M, M) |= ϕ and no M ′ � M and I ′ exist such that (I ′, M ′, M) |= ϕ;
note that I and I ′ are not required to be elements of M and M ′, respectively. Under
MBNF semantics, K π (O) and nonmodal atoms in the rules would not interact, so
the MBNF-based formalism would not correctly capture the semantics of first-order
rule extensions of DLs such as SWRL. Furthermore, ϕ and K ϕ are not equivalent
in MBNF, which would invalidate Proposition 3.6.

3.4. EXISTENTIAL QUANTIFICATION IN MKNF. The semantics of MKNF rules
is quite different from the standard first-order semantics. Consider an MKNF
knowledge base K = (O,P) where O contains the axiom (21)5 and P contains the
rule (22) in which B is a propositional variable.

∃x : A(x)(21)
K p← K A(x)(22)

One might intuitively expect K |=MKNF K p to hold: (21) says that A is not empty,
and (22) derives K p provided that A(x) holds for some x . Such reasoning, however,
is incorrect. The MKNF model M ofK consists of first-order interpretations I ∈ M
such that I |= A(α) for some domain object α ∈ �, but this α varies across the
interpretations in M . If, however, M |= K A(α) were to hold, the object α should
be the same across all interpretations in M . As the following proposition shows,
this is true only in pathological cases.

5 Since DL can be an arbitrary first-order fragment, we use a first-order formula in (21) rather than a
DL axiom for the sake of simplicity.
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PROPOSITION 3.7. Let O be a DL knowledge base, let a1, . . . , an be arbitrary
constants occurring in O, and let ξ be a generalized atom with one free variable x
such that all constants in ξ occur in O. If O |= ξ [α/x] for some α ∈ � that does
not occur in O, then O |= ∀x : [

∧
1≤i≤n x �≈ ai ] ⊃ ξ .6

PROOF. Assume thatO |= ξ [α/x] for some α ∈ � not occurring inO, but at the
same time O �|= ∀x : [ξ ∨∨

1≤i≤n x ≈ ai ]. Then, a model I of O and β ∈ � exist
such that I �|= ξ [β/x] and I �|= β ≈ ai for all 1 ≤ i ≤ n; by the latter condition, β
does not occur in O or ξ . Let I ′ be an interpretation obtained from I by swapping α
with β. Since I and I ′ are isomorphic and neither α nor β occurs in O and ξ , then
I ′ |= O and I ′ �|= ξ [α/x], which contradicts the assumption that O |= ξ [α/x].

Thus, K ξ [α/x] can become true for an unnamed object α only if ξ is true for
all � \ {a1, . . . , an} in all models of O. The latter, however, is true only when O
ensures that ξ holds for “most” elements of the universe or when ξ is a tautology.
Consequently, the MKNF rules can intuitively be understood as being applicable
(mostly) to the individuals that are explicitly given a name either in the DL or the rule
part. This limits the ability of MKNF rules to derive terminological consequences.
For example, rule (23) does not imply the first-order formula (24): unlike the first-
order atom A(x) in the antecedent of (24), the atom K A(x) in the body of (23) is
not applicable to the unnamed objects in the domain �.

K B(x)← K A(x)(23)
∀x : [A(x) ⊃ B(x)](24)

Intuitively, rule (23) “extends” the DL knowledge base with B(a) for each named
object a for which A(a) is derivable. Depending on the expressivity of the DL, this
may affect terminological consequences. For example, let O be the DL knowledge
base containing axioms (25)–(27).

∀x : [C(x) ⊃ D(x) ∨ x ≈ a](25)

∀x : [B(x) ⊃ ¬C(x)](26)

A(a)(27)

Let P contain solely rule (23), and let K = (O,P). Then, since (27) makes
A(a) a consequence of K, (23) “extends” O with B(a). But then, since
O ∪ {B(a)} |= ∀x : [C(x) ⊃ D(x)], we conclude K |=MKNF ∀x : [C(x) ⊃ D(x)].
Thus, while MKNF rules do not derive terminological consequences as the anal-
ogous first-order rules do, MKNF rules can affect terminological consequences
by asserting new ground generalized atoms. Note that the latter can be first-order
sentences and not just simple facts of the form B(a). Thus, MKNF rules can be seen
as a powerful mechanism for manipulating consequences of a first-order theory.
Whether this leads to new terminological consequences depends on the structure
of the generalized atoms and the DL knowledge base.

We next summarize the relationship between MKNF+ and MKNF, and the types
of consequences each formalism can derive.

6 Note that, due to the standard name assumption, the elements of � are constants, so ξ [α/x] is a
valid expression.
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TABLE III. AN MKNF KNOWLEDGE BASE ABOUT CITIES

(28) portCity (Barcelona) Barcelona is a city with a port.
(29) onSea(Barcelona,Mediterranean) Barcelona is on the Mediterranean.
(30) portCity(Hamburg) Hamburg is a city with a port.
(31) ¬ seasideCity(Hamburg) Hamburg is not a seaside city.
(32) rainyCity(Manchester) Manchester is a rainy city.
(33) has(Manchester, AquaticsCentre) Manchester has the Aquatics Centre.
(34) recreational(AquaticsCentre) Aquatics Centre is for recreation.
(35) seasideCity � ∃has.beach Seaside cities have a beach.
(36) beach � recreational Beaches are for recreation.
(37) K seasideCity(x)←

K portCity(x), not¬ seasideCity(x)
Port cities are usually at the seaside.

(38) K InterestingCity(x)←
K [∃ y : has(x,y) ∧ recreational(y)],
not rainyCity(x)

Cities that have recreational facilities
and are known not to be rainy
are interesting.

(39) K HasOnSea(x)← K onSea(x,y) For each seaside city we must...
(41) false← K seasideCity(x), not HasOnSea(x) ...know on which sea the city is.
(42) K SummerDestination(x,y)←

K InterestingCity(x), K onSea(x,y)
Create a list of destinations.

Note: Predicates from O start with a lowercase and others with an uppercase letter.

—By allowing for a mix of nonmodal and modal atoms, MKNF+ rules provide
us with a very general semantic framework capable of capturing both first-order
and nonmonotonic reasoning.

—The transformation of MKNF+ to MKNF knowledge bases from the Section 3.3
allows us to cleanly separate first-order from nonmonotonic reasoning.

—The results in this section show the inherent limitations of the MKNF framework
regarding the types of consequences one can derive.

In the rest of this article, we focus primarily on the nonmonotonic aspects of
reasoning, and leave the investigation of the first-order aspects to related work.
Consequently, we focus for the most part on MKNF knowledge bases and use
MKNF+ only to establish relationships with other formalisms.

3.5. AN EXAMPLE. Imagine a knowledge-based recommender system help-
ing users to decide where to go on holiday, based on the MKNF knowledge
base K = (O,P) presented in Table III. The intuitive meaning of each axiom
is paraphrased on the right-hand side of the table. The DL part O consists
of axioms (28)–(36) that state some basic facts about several European cities.
The program P consists of rules (37)–(41) that derive a list of possible holiday
destinations.

Rule (37) says that port cities are on the seaside by default—that is, unless there
is evidence to the contrary. For example, Barcelona is a port city by (28), and there
is no evidence that it is not a seaside city, so we derive seasideCity(Barcelona). In
contrast, (31) explicitly says that Hamburg is not a seaside city (namely, Hamburg
is located on the river Elbe). Hence, Hamburg is an exception to rule (37): the
atom not¬seasideCity(Hamburg) is false, so the rule does not “fire.” We discuss
the usage of MKNF rules to represent defaults in Section 7.7.

Rule (38) demonstrates two important points. The first body atom of (38) selects
all things with a recreational facility. From seasideCity(Barcelona) and (35), we
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conclude that Barcelona has some beach, and by (36) we conclude that this beach
is a recreational facility. Note that we do not know the name of the beach, but
we know that it exists; nevertheless, this information suffices to make the K-atom
K[∃y : has(x, y) ∧ recreational(y)] true for x = Barcelona. Had we replaced this
atom with the conjunction ψ = K has(x, y) ∧K recreational(y), we would not
get this consequence because, for M |= K recreational(y) to hold for some y, the
value of y must be the same in all first-order interpretations in M . Axiom (35)
implies existence of a beach; however, the beach is not known by name and it can
be a different individual in different first-order interpretations in M , thus prevent-
ing the variable y in ψ to be bound to a fixed element of the domain �. Thus,
an atom K ξ in the body of a rule can intuitively be understood as a query that
checks whether O and the facts derived from all the rules imply ξ . Generalized
atoms (such as conjunctive queries) in rules are thus an important generaliza-
tion, since they allow us to pose general first-order, and not just atomic queries
over O.

The second body atom of rule (38) demonstrates the use of negation as failure and
closed-world reasoning. The first atom of rule (38) also holds for x = Manchester
due to rules (33)–(34); however, assertion (32) explicitly says that Manchester is
a rainy city, so not rainyCity(x) is false and rule (38) does not “fire.” In contrast,
we have no information that Barcelona is a rainy city, so we make a default
conjecture that it is not. Thus, rule (38) derives InterestingCity(Barcelona), but not
InterestingCity(Manchester).

In our application, it might be useful to check whether K contains all relevant
data—that is, whether it contains the name of the sea for each seaside city. We
might try to use the axiom seasideCity � ∃onSea.� for this purpose; however, this
axiom merely derives that each seaside city is on some sea and does not really
check whether the sea is explicitly present in K. To solve this problem, we need a
database-like integrity constraint that constrains the state of K rather than the world
being modeled [Reiter 1992]. Rules (39)–(40) define such an integrity constraint:
the first rule projects the second argument from the onSea relation, and the second
rule performs the required check. Due to (29), the integrity constraint is satisfied for
Barcelona; furthermore, there are no other seaside cities, so the integrity constraint
is satisfied for all of K.

Rule (41) finally produces a list of possible summer destinations, consisting
of a city and a sea that the city is on. Since the integrity constraint (39)–(40) is
satisfied, we know the sea of each seaside city, so we are sure that no interest-
ing city has been dropped from the list just because the name of the sea is not
known.

4. Characterizing MKNF Models

In this section we show that each MKNF model M of an MKNF knowledge
base K = (O,P) can be characterized by a (possibly infinite) first-order theory
T whose set of first-order models is exactly M—that is, M = {I | I |= T }. The
theory T also characterizes MKNF entailments of the form K �|=MKNF ψ , where ψ
is a modally closed MKNF formula. By Proposition 3.6, this characterization is
applicable to MKNF+ knowledge bases as well. This result is interesting for the
following reasons.
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—It reveals a close correspondence between MKNF knowledge bases and ASP: an
MKNF knowledge base K = (O,P) can be intuitively understood as an answer
set program P with an additional filter O.

—We use this characterization in Section 6 to obtain decidability and complexity
results of reasoning with a particular class of MKNF knowledge bases.

—Our characterization may provide a starting point for the implementation of
practical reasoning systems.

For the sake of generality, we extend the definition of an MKNF knowledge
base K = (O,P) and require the program P to be countable, but not necessarily
finite; P and K are then given semantics by translating then into MKNF theories
as follows:

π (P) = {π (r ) | r ∈ P} π (K) = {π (O)} ∪ π (P)

If P is finite, this translation is equivalent to the one given in Definition 3.4,
which justifies overloading the operator π . By allowing for infinite rule sets, we
obtain the possibility of considering the ground knowledge base KG = (O,PG) in
which PG is the grounding of P with respect to the countable universe �. By the
semantics of MKNF, K has exactly the same models as KG ; therefore, we develop
our characterization only for ground MKNF knowledge bases.

For different types of MKNF rules, we present different strategies for identi-
fying the theory that represents the MKNF models of KG . For general rules, we
must use a guess-and-check approach. For the case of (stratified and nonstratified)
nondisjunctive MKNF rules, we can construct the formula in a bottom-up fashion,
much like this is done in ordinary datalog. These results are related to the charac-
terization of MKNF models of propositional MKNF formulae [Rosati 1999] and
of MKNF-based multiagent systems [Rosati 2003].

4.1. GENERAL RULES. We now develop our characterization of MKNF mod-
els by a first-order theory. We use the following MKNF knowledge base
Kex

G = (Oex ,Pex
G ) to illustrate the concepts we introduce. The DL knowledge base

Oex contains only the propositional axiom (42),7 and the program Pex
G contains the

MKNF rules (43)–(44).

q ⊃ r(42)
K q ← not p(43)
K s ← not r(44)

Let Mex = {I | I |= q ∧ (q ⊃ r )}. Clearly, we have Mex |= not p, Mex |= K q,
Mex |= K r , Mex �|= not r , and Mex �|= K s. Furthermore, since Mex contains all
first-order interpretations in which q is true, for each MKNF interpretation M ′ such
that M ′ � Mex , a first-order interpretation I ′ ∈ M ′ \ Mex exists such that I ′ �|= q;
thus, M ′ �|= K q, so (I ′, M ′, Mex ) �|= Kex

G , and Mex is an MKNF model of Kex
G . It

is possible to see that Kex
G has no other MKNF models.

Our formalism is related to ASP, so we next remind the reader of the reasoning
algorithms used by ASP solvers. One can check whether a propositional answer
set program P admits an answer set as follows:

7 We take DL to be propositional logic for the sake of simplicity.
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(1) Guess an interpretation I for P .
(2) Check whether I |= P .
(3) Check whether I is an answer set of P I . This can be done by guessing an

interpretation I ′ � I and checking whether I ′ |= P I .

By applying these checks to the ASP program corresponding to Pex
G , we obtain

I = {q, s} as the only answer set.
Our characterization is similar in spirit to the ASP algorithm: it guesses an

MKNF interpretation M for KG , checks whether M |= KG , and then checks
whether an MKNF interpretation M ′ � M exists such that (I ′, M ′, M) |= KG .
The main problem is that an MKNF interpretation is an infinite set of first-order
interpretations, so it is cumbersome to work with. We next show, however, that each
MKNF model M of KG can be described by a first-order theory. We first introduce
the notation that we use in the rest of this article.

Definition 4.1. Let KG = (O,PG) be a ground MKNF knowledge base. The
set KA(KG) is the smallest set containing (i) all ground modal atoms K ξ occurring
in PG , and (ii) an atom K ξ for each ground modal atom not ξ occurring in PG .
Furthermore, HA(KG) is the subset of KA(KG) that contains all K-atoms occurring
in the head of some rule in PG .

Let P and N be disjoint sets of K-atoms, and let rG ∈ PG be a ground rule.
The rule rG[K, P, N ] is obtained by replacing each modal atom K ξ in rG with
true if K ξ ∈ P or with false if K ξ ∈ N . Similarly, the rule rG[not, P, N ] is
obtained by replacing each modal atom not ξ in rG with true if K ξ ∈ N or with
false if K ξ ∈ P . Finally, rG[P, N ] = rG[K, P, N ][not, P, N ]. In all these cases,
the result is simplified as follows:

—If the rule contains the atom true in the head or the atom false in the body, the
rule is replaced with true←.

—If all the head atoms in the rule are false and all body atoms in the rule are true,
the rule is replaced with false←.

The programs PG[K, P, N ], PG[not, P, N ], and PG[P, N ] are obtained by re-
placing each rule rG ∈ PG with rG[K, P, N ], rG[not, P, N ], and rG[P, N ],
respectively.

For a set of rules P , we write P = true if P = ∅ or if each rule in P is of the
form true←; similarly, we write P = false if P contains the rule false←.

Intuitively, HA(KG) determines the building blocks of our representation—that
is, each MKNF model of KG will be represented by a subset Ph of HA(KG). The
set KA(KG) determines the modal atoms that need to be evaluated in the first-
order theory. In our running example, we have KA(Kex ) = {K p, K q, K r, K s} and
HA(Kex ) = {K q, K s}. In ASP, the Herbrand base of an ASP program plays a role
analogous to HA(KG) and KA(KG). The following definition shows how to obtain
the desired representation of the MKNF models of KG .

Definition 4.2. Let KG = (O,PG) be a ground MKNF knowledge base and
let Ph be a subset of HA(KG). The objective knowledge of Ph with respect to KG is
the first-order theory OBO,Ph defined as follows:

OBO,Ph = {π (O)} ∪ {ξ | K ξ ∈ Ph}
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In our running example, the MKNF model Mex corresponds to the objective
knowledge OBO,Pex

h
where Pex

h = {K q}—that is, Mex = {I | I |= OBO,Pex
h
}.

The following definition can be seen as being opposite to the previous one: it
establishes a relationship between an MKNF interpretation M and a subset of the
atoms of HA(KG) that are true in M .

Definition 4.3. For an MKNF interpretation M and a set of ground K-atoms
S, the subset of S induced by M is the set {K ξ ∈ S | M |= ξ}.

The following key lemma shows that, for each MKNF model M of KG , the
subset Ph of HA(KG) that is induced by M also characterizes M via OBO,Ph .

LEMMA 4.4. For KG = (O,PG) a ground MKNF knowledge base, let M be
an MKNF model of KG, and let Ph be the subset of HA(KG) induced by M. Then,
M is equal to the set of first-order interpretations M ′ = {I | I |= OBO,Ph }.

PROOF. Let M be an MKNF model of K and consider an arbitrary first-order
interpretation I ∈ M . Since M |= KO, we have I |= O. Furthermore, Ph is in-
duced by M so, for each K ξ ∈ Ph , we have M |= K ξ , which implies I |= ξ . Thus,
I |= OBO,Ph , which proves M ⊆ M ′.

To show that M ′ = M , assume that M ′ � M and consider an arbitrary inter-
pretation I ′ ∈ M ′ \ M . For each modal atom not ξ , we have (I ′, M ′, M) |= not ξ
iff (I ′, M, M) |= not ξ by the definition of satisfiability of not-atoms in an MKNF
triple. Furthermore, for each modal atom K ξ such that M �|= K ξ , since M ′ � M ,
we have M ′ �|= K ξ as well. Finally, for each modal atom K ξ ∈ Ph , by the definition
of OBO,Ph , we have M ′ |= K ξ . To summarize, all K-atoms in Ph and all not-atoms
have the same truth values in M and M ′, and if M �|= K ξ , then M ′ �|= K ξ as well;
we denote this property with (*). Consider now an arbitrary ground rule rG ∈ PG .
Since M is an MKNF model of KG , we have M |= rG . If rG contains a modal atom
K ξ in the head such that M |= K ξ , then (I ′, M ′, M) |= rG due to (*). If all head
K-atoms of rG are false in M , then rG contains a body atom that is false in M . If this
is a K-atom, by (*) this atom is false in M ′ as well, so (I ′, M ′, M) |= rG ; in case of
a not-atom, (I ′, M ′, M) |= rG holds trivially. Finally, (I ′, M ′, M) |= KO by the
definition of M ′; hence, (I ′, M ′, M) |= KG , which contradicts the assumption that
M is an MKNF model of KG .

Thus, each MKNF model M of KG is represented by a subset Ph of HA(KG) and,
conversely, each subset Ph of HA(KG) corresponds to an MKNF interpretation M
via OBO,Ph . Thus, to check whether KG admits an MKNF model, one might guess
Ph and then check, using the definitions from Section 2.3, whether the set of first-
order interpretations of OBO,Ph constitutes an MKNF model of KG . This requires
determining the truth value of each atom K ξ ∈ KA(K) \ Ph: if OBO,Ph |= ξ , then
K ξ is true in the MKNF interpretation corresponding to Ph , and vice versa. Such
a characterization, however, would not allow us to derive the optimal complexity
results in Section 6, so we proceed in a slightly different way. We observe that
each MKNF interpretation M partitions KA(KG) into (P, N ), where P is a set of
K-atoms that are true in M , and N is a set of K-atoms that are false in M . The
relationship between (P, N ) and M is captured by the following definition.

Definition 4.5. A partition (P, N ) of KA(KG) is consistent with an MKNF
interpretation M iff K ξ ∈ P implies M |= K ξ , and K ξ ∈ N implies M �|= K ξ .
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Furthermore, (P, N ) is weakly consistent with M iff K ξ ∈ P ∩ HA(KG) implies
M |= K ξ , and K ξ ∈ N implies M �|= K ξ .

In our running example, let Pex = {K q, K r, K s} and N ex = {K p}. Parti-
tion (Pex , N ex ) is consistent with Mex : the set Pex contains exactly the atoms
that are true in Mex , and the set N ex contains exactly the atoms that are false
in Mex .

Instead of guessing Ph and then evaluating the atoms in KA(KG), we guess a
partition (P, N ) of KA(KG) and thus fix the value of all atoms in advance; then, for
Ph = P ∩ HA(KG), we check whether the initial guess was consistent with OBO,Ph .

In our running example, consider a partition (P, N ) of KA(Kex
G ) where P = {K q}

and N = {K p, K r, K s}. Then, Ph = P ∩ HA(KG) = {K q}. But then, axiom (42)
implies that OBO,Ph |= r , so the choice K r ∈ N is not consistent with OBO,Ph .

The following lemma shows how to check whether a partition (P, N ) is consistent
with OBO,Ph .

LEMMA 4.6. Let KG be a ground MKNF knowledge base, let Ph ⊆ HA(KG)
be a set of K-atoms, let M = {I | I |= OBO,Ph }, and let (P, N ) be a partition of
KA(KG) such that Ph ⊆ P. Then, (P, N ) is weakly consistent with M if and only
if OBO,Ph �|= ξ for each K ξ ∈ N. Furthermore, (P, N ) is consistent with M if and
only if, additionally, OBO,Ph |= ξ for each K ξ ∈ P \ Ph.

PROOF. Observe that OBO,Ph |= ξ for each K ξ ∈ Ph . Both claims now follow
trivially from Definition 4.5.

Thus, we can guess a partition (P, N ) of KA(KG), take the set of head atoms
Ph = P ∩ HA(KG), and compute the formula OBO,Ph that represents an MKNF
interpretation M . To check whether M |= PG , since our partition (P, N ) deter-
mines the value of all modal atoms in PG , we can simply replace each modal
atom in PG with its value as determined by (P, N ) and simplify the result ac-
cording to the rules for propositional logic. This is captured by the following
lemma.

LEMMA 4.7. Let KG = (O,PG) be a ground MKNF knowledge base, let
(P, N ) be a partition of KA(KG), and let M be an MKNF interpretation.

(1) If (P, N ) is consistent with M, then PG[P, N ] = true iff (I, M, M) |= PG for
each I ∈ M.

(2) If (P, N ) is weakly consistent with M andPG is positive, thenPG[P, N ] = true
implies (I, M, M) |= PG for each I ∈ M.

PROOF. The first claim follows straightforwardly from Definition 4.5 and the
definition of satisfaction of an MKNF theory in an MKNF triple. For the second
claim, assume PG[P, N ] = true and consider an arbitrary positive ground rule
rG ∈ PG and each I ∈ M . Since rG[P, N ] = true, either a head atom K Hi exists
such that K Hi ∈ P , or a body atom K B j exists such that K B j �∈ P . In the first case,
since K Hi ∈ HA(KG) and (P, N ) is weakly consistent with M , we have M |= K Hi ,
so (I, M, M) |= rG . In the second case, K B j �∈ P implies K B j ∈ N ; but then,
since (P, N ) is weakly consistent with M , we have M �|= K B j , so (I, M, M) |= rG
as well.
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In our running example, we have Pex
G [Pex , N ex ] = true; by Lemma 4.7, we then

know that Mex |= Pex
G .

Finally, to check whether KG |=MKNF ψ , we need to evaluate ψ in the MKNF
interpretation represented by OBO,Ph . If ψ were to contain only atoms from KA(KG),
we could do this as shown in Lemma 4.7. For the sake of generality, however, we
allow ψ to contain arbitrarily nested modal operators, as well as modal atoms
that do not occur in KA(KG). The truth value of ψ in the MKNF interpretation
represented by OBO,Ph is then determined inductively, as shown by the following
lemma.

Definition 4.8. Let KG = (O,PG) be a ground MKNF knowledge base, let Ph
be a set of K-atoms such that Ph ⊆ HA(KG), and let ψ be a modally closed MKNF
formula. The value of ψ in Ph , written ψ[Ph], is defined inductively as follows:

—if ψ = K ξ , then ψ[Ph] = true if and only if OBO,Ph |= ξ ′, where ξ ′ is the modally
closed formula obtained from ξ by replacing each outermost modal atom in ξ
with its value in Ph;

—if ψ = not ξ , then ψ[Ph] = true if and only if OBO,Ph �|= ξ ′, where ξ ′ is the
modally closed formula obtained from ξ by replacing each outermost modal
atom in ξ with its value in Ph;

—in all other cases, ψ[Ph] = true if and only if OBO,Ph |= ψ ′[Ph], where ψ ′ is the
modally closed formula obtained from ψ by replacing each outermost modal
atom in ψ with its value in Ph .

LEMMA 4.9. Let KG be a ground MKNF knowledge base, let Ph ⊆ HA(KG) be
a set of K-atoms, let M = {I | I |= OBO,Ph }, and let ψ be a modally closed MKNF
formula. Then, (I, M, M) |= ψ for each I ∈ M if and only if ψ[Ph] = true.

PROOF. By induction on the structure of ψ one can show that, for each
modally closed subformula ψ ′ of ψ , we have (I, M, M) |= ψ ′ for each I ∈ M
iff ψ ′[Ph] = true; this property follows straightforwardly from the definition of
evaluation of ψ ′ in (I, M, M) in Section 2.3, and it implies our claim.

Based on these definitions, our characterization of MKNF entailments of the
form KG �|=MKNF ψ is given by function not-entails(KG, ψ), defined in Table IV.

THEOREM 4.10. For a ground MKNF knowledge base KG and a modally
closed MKNF formula ψ , not-entails(KG, ψ) returns true if and only if KG �|=MKNF ψ .

PROOF. (⇒) If not-entails(KG, ψ) returns true, then some P ⊆ KA(KG) satisfies
Conditions (1)–(6). Let Ph = P ∩ HA(KG) and N = KA(KG) \ P . We show that
M = {I | I |= OBO,Ph } is an MKNF model of KG . Since Condition (1) is satisfied,
M is not empty. Since Conditions (2) and (3) are satisfied, (P, N ) is consistent with
M by Lemma 4.6. But then, since Condition (4) is satisfied, (I, M, M) |= PG for
each I ∈ M by Lemma 4.7. Clearly, M |= O, so (I, M, M) |= KG as well. Assume
now that M ′′ � M exists such that (I ′′, M ′′, M) |= KG for each I ′′ ∈ M ′′. Let P ′h
be the subset of HA(KG) that is induced by M ′′, let M ′ = {I | I |= OBO,P ′h }, let P ′

be the subset of KA(KG) that is induced by M ′, and let N ′ = KA(KG) \ P ′. Clearly,
M ′′ ⊆ M ′, so M ′ |= K ξ implies M ′′ |= K ξ for each K ξ ∈ KA(KG); furthermore,
M ′′ |= K ξ iff M ′ |= K ξ for each K ξ ∈ HA(K), so (I ′, M ′, M) |= KG for each
I ′ ∈ M ′. Consider now each K ξ ∈ P ′: since M ′ |= K ξ and M ⊆ M ′, we have
M |= K ξ as well, so K ξ ∈ P . Furthermore, it is impossible that P ′ = P and
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TABLE IV. THE DEFINITION OF THE FUNCTION not-entails(KG , ψ)

Input:
KG = (O,PG): a ground MKNF knowledge base
ψ : a modally closed MKNF formula

Output:
true if KG �|=MKNF ψ ; false otherwise

if P ⊆ KA(KG) exists such that, with Ph = P ∩ HA(KG) and N = KA(KG) \ P ,
(1) OBO,Ph is satisfiable, and
(2) OBO,Ph |= ξ for each K ξ ∈ P \ Ph , and
(3) OBO,Ph �|= ξ for each K ξ ∈ N , and
(4) PG[P, N ] = true, and
(5) for each P ′ � P , with P ′h = P ′ ∩ HA(KG) and N ′ = KA(KG) \ P ′,

(5a) OBO,P ′h |= ξ for some K ξ ∈ N ′ \ N , or
(5b) PG[not, P, N ][P ′, N ′] = false

and
(6) ψ[Ph] = false

then return true; otherwise return false

M �= M ′, so P ′ � P . Since P ′ is induced by M ′, the partition (P ′, N ′) is consistent
with M ′, so Condition (5a) does not hold by Lemma 4.6. Since (I ′, M ′, M) |= KG
for each I ′ ∈ M ′ and because PG[not, P, N ] does not contain not-atoms, we have
(I ′, M ′, M ′) |= PG[not, P, N ] as well. But then, PG[not, P, N ][P ′, N ′] = true by
Lemma 4.7, so Condition (5b) does not hold as well. This, however, contradicts
the assumption that Condition (5) is satisfied. Hence, no such M ′ and M ′′ exist,
and M is an MKNF model of KG . Due to Condition (6) and Lemma 4.9, we have
(I, M, M) �|= ψ for some I ∈ M , so KG �|=MKNF ψ .

(⇐) If KG �|=MKNF ψ , then an MKNF model M of KG exists such that M �|= ψ .
We show that Conditions (1)–(6) are satisfied for the subset P of KA(KG) that
is induced by M , Ph = P ∩ HA(KG), and N = KA(KG) \ P . By Lemma 4.4, we
have M = {I | I |= OBO,Ph }. Since M is not empty, OBO,Ph is satisfiable, so Con-
dition (1) holds. Since P is induced by M , the partition (P, N ) is consistent
with M , so Conditions (2) and (3) hold. Since (I, M, M) |= PG for each I ∈ M ,
we have PG[P, N ] = true by Lemma 4.7, so Condition (4) holds. Assume now
that Condition (5) does not hold for some P ′ � P , and let P ′h = P ′ ∩ HA(KG),
N ′ = KA(KG) \ P ′, and M ′ = {I | I |= OBO,P ′h }. Since P ′h ⊆ Ph and OBO,Ph is
satisfiable by Condition (1), OBO,P ′h is satisfiable as well, so M ′ is not empty.
Since Condition (5a) does not hold, we have OBO,P ′h �|= ξ for each K ξ ∈ N ′,
so (P ′, N ′) is weakly consistent with M ′ by Lemma 4.6. Since Condition (5b)
does not hold, PG[not, P, N ][P ′, N ′] = true; furthermore, PG[not, P, N ] is pos-
itive, so (I ′, M ′, M ′) |= PG[not, P, N ] for each I ′ ∈ M ′ by Lemma 4.7. Since
PG[not, P, N ] does not contain not-atoms, we have (I ′, M ′, M) |= PG[not, P, N ]
as well. Clearly, M ′ |= O, so (I ′, M ′, M) |= KG . Finally, P is exactly the subset of
KA(KG) that is true in M , so M = {I | I |= OBO,P}. Since P ′h ⊆ P ′ � P , we have
M � M ′. This, however, contradicts the assumption that M is an MKNF model
of KG . Hence, no such P ′ exists and Condition (5) is satisfied. Condition (6) is
satisfied by Lemma 4.9, so not-entails(KG, ψ) returns true.
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We invite the reader to verify that (Pex , N ex ) is the only partition of KA(Kex
G )

that satisfies Conditions (1)–(5) in Table IV. Hence, our characterization correctly
identifies OBO,Pex

h
as the MKNF model of Kex

G .
Also, the reader should note a close correspondence between the characterization

shown in Table IV and the procedure used to compute answer sets of an ASP
program outlined at the beginning of this section: step 1 of the ASP algorithm
corresponds to guessing a subset P of KA(KG); step 2 corresponds to Condition
(4); and step 3 corresponds to guessing a subset P ′ � P and checking Condition
(5b). Thus, the general structures of the two algorithms are the same, and Conditions
(1)–(3) and (5a) in Table IV can be understood as additional filters that ensure the
compatibility of an answer set with the DL knowledge base.

Due to this similarity, we believe that not-entails(KG, ψ) provides a starting point
for the implementation of practical reasoners for cases when PG is finite and all
first-order problems are decidable. ASP systems such as DLV and Smodels use
advanced optimization strategies such as intelligent grounding [Eiter et al. 1997b]
to prune the number of candidate interpretations; however, the implemented al-
gorithms follow roughly the algorithm outlined in the previous paragraph. These
optimizations are equally applicable in the case of MKNF knowledge bases. Thus,
a practical reasoner for MKNF knowledge bases can be obtained by integrating
an ASP system with a DL reasoner and extending the basic ASP algorithm with
Conditions (1)–(3) and (5a). While integrating an ASP solver with a DL rea-
soner might not be straightforward from an engineering point of view, we see no
fundamental obstacles that would make our approach inappropriate for practical
usage.

4.2. POSITIVE RULES. The function from the previous section can be simplified
if the rules in PG do not contain not-atoms and ψ is of the form K ϕ with ϕ a
closed first-order formula. To this end, we use the following property.

LEMMA 4.11. For K = (O,P) a positive MKNF knowledge base and ϕ a
closed first-order formula, K |=MKNF K ϕ if and only if K |=S5 K ϕ.

PROOF. The (⇐) direction is trivial because all S5 models are also MKNF
models. For the (⇒) direction, assume that K �|=S5 K ϕ; hence, an S5 model M
of K exists such that I1 �|= ϕ for some I1 ∈ M . Let M ′ be the maximal MKNF
interpretation such that M ′ ⊇ M and (I ′, M ′, M ′) |= K for each I ′ ∈ M ′. Since K
does not contain not-atoms, (I ′, M ′, M) |= K as well, so M ′ is an MKNF model
of K. Clearly, I1 ∈ M ′, so M ′ �|= K ϕ, which implies K �|=MKNF K ϕ.

Let not-entails+(KG, ψ) be the function defined as shown in Table IV, but without
Conditions (2) and (5). As we show next, such a function can be used for answering
positive queries in a positive knowledge base.

THEOREM 4.12. For a positive ground MKNF knowledge base KG and
ψ = K ϕ with ϕ a closed first-order formula, the function not-entails+(KG, ψ)
returns true if and only if KG �|=MKNF ψ .

PROOF. If KG �|=MKNF ψ , then Conditions (1), (3), and (4) in Table IV
hold in the same way as in Theorem 4.10, so not-entails+(KG, ψ) returns true.
Conversely, if the function not-entails+(KG, ψ) returns true, then a subset P of
KA(KG) satisfying Conditions (1), (3), (4), and (6) exists. Let Ph = P ∩ HA(KG),
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N = KA(KG) \ P , and M = {I | I |= OBO,Ph }. Condition (1) holds, so M is not
empty. Condition (3) holds, so (P, N ) is weakly consistent with M . Condition
(4) holds and PG is positive, so (I, M, M) |= PG for each I ∈ M by Lemma 4.7.
Clearly, M |= O, so M is an S5 model of KG . Condition (6) holds, so M �|= ψ
by Lemma 4.9, which implies KG �|=S5 ψ . But then, KG �|=MKNF ψ as well by
Lemma 4.11.

4.3. POSITIVE NONDISJUNCTIVE RULES. We now turn our attention to the case
when KG is a positive nondisjunctive MKNF knowledge base—that is, when the
rules in PG have the form

K H ← K B1, . . . , K Bm .(45)

We show that such programs are either unsatisfiable or they have a single MKNF
model that corresponds to the least fixpoint of a certain operator.

THEOREM 4.13. If an MKNF knowledge base K = (O,P) is positive and
nondisjunctive, then K has at most one MKNF model.

PROOF. We first show the following property (*): if M is a set of MKNF
interpretations such that M ∈M implies M |= K, then

⋃
M |= K as well.8 Since

M ∈M implies M |= K, we have I |= O for each I ∈ M , so
⋃

M |= O as well.
Consider an arbitrary ground rule rG obtained from an arbitrary rule r ∈ P by
replacing all universally quantified variables with some elements from �. The
rule rG is of the form (45). Assume that rG is such that

⋃
M |= K Bi for each

1 ≤ i ≤ n. Consider an arbitrary M ∈M. Since M ⊆⋃
M, we have M |= K Bi as

well. Since M |= rG , we have M |= K H . But then,
⋃

M |= K H , so
⋃

M |= rG
as well.

Let M be the set of all MKNF models of K. To prove this theorem, assume
that M contains more than one element. Clearly, M �

⋃
M for each M ∈M;

furthermore,
⋃

M |= K by (*), which contradicts the assumption that M contains
all MKNF models of K.

By Lemma 4.4, the MKNF model of KG can be represented by using a subset
Ph of HA(KG). We now show how to compute this subset in a deterministic way.

Definition 4.14. Let KG = (O,PG) be a positive ground nondisjunctive
MKNF knowledge base. The immediate consequence operator TKG : 2HA(KG ) →
2HA(KG ) is defined as follows:

TKG (S) = {K H | for each rule rG ∈ PG of the form (45) such that
OBO,S |= Bi for each 1 ≤ i ≤ m

} ∪{
K ξ ∈ HA(KG) | OBO,S |= ξ

}
Intuitively, the first part of TKG (S) computes the immediate consequences of PG

assuming that the atoms in S are known to hold, and the second part adds the atoms
from HA(KG) that are entailed by OBO,S . Note that, if OBO,S is unsatisfiable, then
TKG (S) = HA(KG). The following property of TKG is easy to prove.

8
⋃

M should be understood as
⋃

M∈M M .
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LEMMA 4.15. The operator TKG (S) is monotone on the lattice of the sub-
sets of HA(KG)—that is, for each S, S′ ⊆ HA(KG), if S ⊆ S′, then TKG (S) ⊆
TKG (S′).

PROOF. If K ξ ∈ TKG (S) because OBO,S |= ξ , by monotonicity of first-order
logic we have OBO,S′ |= ξ as well, so K ξ ∈ TKG (S′). If K ξ ∈ TKG (S) because K ξ
occurs in the head of some rule rG ∈ PG and OBO,S |= Bi for each K Bi ∈ body(rG),
then OBO,S′ |= Bi as well, so K ξ ∈ TKG (S′).

By Lemma 4.15 and the well-known Knaster-Tarski theorem, the operator TKG

has a unique least fixpoint T∞KG
. This fixpoint can be obtained by setting S0 = ∅

and Si = TKG (Si−1) for i > 0. If PG is finite, then Sn = Sn+1 = . . . = T∞KG
for

some integer n; otherwise, T∞KG
= ⋃

i∈IN Si . We now show that, if it is consistent,
the objective knowledge OBO,T∞KG

defines an MKNF model of KG .

THEOREM 4.16. Let KG = (O,PG) be a positive ground nondisjunctive
MKNF knowledge base, and let M = {I | I |= OBO,T∞KG

}.
(1) If M �= ∅, then M is an MKNF model of KG.
(2) If KG has an MKNF model, then this model is equal to M.

PROOF. (Claim 1) Assume that M �= ∅. Clearly, M |= O. Furthermore, for
each rule of the form (45), if M |= K Bi for each 1 ≤ i ≤ m, since T∞KG

is a fix-
point of TKG , then K H ∈ T∞KG

as well, so M |= K H . Hence, (I, M, M) |= KG for
each I ∈ M . Assume now that some M ′′ � M exists such that (I ′′, M ′′, M) |= KG
for each I ′′ ∈ M ′′. Let P ′h be the subset of HA(KG) induced by M ′′, and let
M ′ = {I | I |= OBO,P ′h }. As in the proof of Theorem 4.10, we have M ′′ ⊆ M ′

and (I ′, M ′, M) |= KG for each I ′ ∈ M ′. Now consider an arbitrary ground rule
rG ∈ PG of the form (45). If OBO,P ′h |= Bi for each 1 ≤ i ≤ m, then M ′ |= K Bi

as well; but then, M ′ |= rG implies M ′ |= K H , which implies K H ∈ P ′h . Simi-
larly, if OBO,P ′h |= ξ for some K ξ ∈ HA(KG), then M ′ |= K ξ , so K ξ ∈ P ′h . Hence,
TKG (P ′h) = P ′h—that is, P ′h is a fixpoint of TKG . Consider now each K ξ ∈ P ′h . Since
M ′ � M , we have M |= K ξ , which implies OBO,T∞KG

|= ξ ; but then, by Definition
4.14, K ξ ∈ T∞KG

, so P ′h ⊆ T∞KG
. Finally, since M �= M ′, we have P ′h �= T∞KG

, so
P ′h � T∞KG

. Hence, P ′h is a fixpoint of TKG that is strictly smaller than the least
fixpoint T∞KG

, which is a contradiction. Thus, no such M ′ and M ′′ exist, and the
claim holds.

(Claim 2) Assume that KG has an MKNF model M ′, which induces a subset P ′h
of HA(KG). As in the proof of Claim 1, TKG (P ′h) = P ′h—that is, P ′h is a fixpoint of
TKG . Clearly, OBO,P ′h is satisfiable. Furthermore, since T∞KG

is the minimal fixpoint
of TKG , we have T∞KG

⊆ P ′h; but then, OBO,T∞KG
is satisfiable and M �= ∅. By claim 1,

M is an MKNF model of KG ; furthermore, by Theorem 4.13, M = M ′.

By Lemma 4.9 and Theorem 4.16,KG |=MKNF ψ for some modally closed MKNF
formula ψ if and only if OBO,T∞KG

|= ψ[T∞KG
].

4.4. STRATIFIED RULES. We now define the class of stratified programs. These
are nondisjunctive, but they can contain not-atoms—that is, they are of the
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form (46). The rules, however, can be separated in strata, each of which can be
evaluated separately.

K H ← K B1, . . . , K Bm, not Bm+1, . . . , not Bn(46)

Definition 4.17. LetKG = (O,PG) be a ground nondisjunctive MKNF knowl-
edge base, and let λ : KA(KG)→ IN+ be a function assigning a positive integer to
each K-atom in KA(KG). For a modal atom K ξ ∈ KA(KG), the sets of K-atoms
[K ξ ]↑ and [K ξ ]↓ are defined as follows:

[K ξ ]↓ = {K ϕ | K ϕ ∈ HA(KG) such that λ(K ϕ) ≤ λ(K ξ )}
[K ξ ]↑ = HA(KG) \ [K ξ ]↓

We say that λ is a stratification of PG if the following conditions hold:

(1) For each rule rG ∈ PG of the form (46), λ(K H ) ≥ λ(K Bi ) for each 1 ≤ i ≤ m,
and λ(K H ) > λ(K B j ) for each m + 1 ≤ j ≤ n.

(2) For each atom K ξ ∈ KA(KG) and each subset Sh ⊆ [K ξ ]↓, if OBO,Sh �|= ξ ,
then OBO,Sh∪[K ξ ]↑ �|= ξ as well.

The programPG is stratified if a stratification λ exists. A stratification λ partitions
PG into strata P1

G, . . . ,P�
G as follows:

P i
G = {rG ∈ PG | λ(K H ) = i where K H is the head atom of rG}

This sequence is often identified with λ and is also called a stratification.
A nonground MKNF knowledge base K = (O,P) is stratified if KG = (O,PG)

is stratified, where PG is the ground program obtained from P ′G = gr(P,�) by
removing each rule that contains a ground first-order atom K P(t1, . . . , tn) in its
body such that P occurs neither in O nor in the head of some rule in P ′G .

Intuitively, if a ground program PG is stratified, then the values of all not-
atoms in a stratum P i

G are fully defined by lower strata, and that no modal atom
in P i

G changes its value during an evaluation of a higher stratum. Condition (1)
of Definition 4.17 corresponds to the case of ordinary programs, and it ensures
that evaluating a rule from P i

G does not derive a fact from a lower stratum. To
understand the rationale behind Condition (2), consider the MKNF knowledge
base KG where DL is propositional logic, O = {q ∧ r ⊃ p}, and PG contains the
rules K r ← not p and K q ← K r . Without O, the program PG is stratified for
λ(K p) = 1, λ(K r ) = 2, and λ(K q) = 3: we can first derive K r using the first rule,
and then derive K q using the second rule. With O, however, after we derive these
facts, the atom K p becomes true, which invalidates the antecedent of the first rule.
Note that λ does not satisfy Condition (2) of Definition 4.17: for S = ∅ ⊆ [K p]↓
we have OBO,S �|= p, but OBO,S∪[K p]↑ |= p. Clearly, this condition makes checking
whether KG is stratified difficult in general. Stratification can be checked in the
usual way if (i) no predicate in the head of a rule in PG occurs in O and (ii) if O
or PG use equality, then KG axiomatizes the unique name assumption. This is an
important case because it allows one to use rules to define constraints over a DL
knowledge base.

A nonground program P is stratified if, roughly speaking, its grounding gr(P,�)
is stratified as well. The condition in Definition 4.17 relaxes this rather strict notion
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of stratification by removing from gr(P,�) the ground rules that are obviously
satisfied in each MKNF model of K.

An MKNF model for a stratified MKNF knowledge base KG can be computed
by processing strata sequentially.

Definition 4.18. Let KG = (O,PG) be a ground MKNF knowledge base and
let P1

G, . . . ,P�
G be a stratification of PG . The sequence of subsets U0, . . . , U� of

HA(KG) is inductively defined as

U0 = ∅ and
Pi = {K ξ ∈ KA(KG) | λ(K ξ ) < i and OBO,Ui−1 |= ξ} ⎫⎪⎪⎪⎬

⎪⎪⎪⎭
for 1 ≤ i ≤ �.

Ni = {K ξ ∈ KA(KG) | λ(K ξ ) < i and OBO,Ui−1 �|= ξ}
χi = {K ξ ← | K ξ ∈ Ui−1} ∪ P i

G[not, Pi , Ni ]

Ki
G = (O, χi )

Ui = T∞Ki
G

We define U∞KG
= U�.

We now show that U∞KG
defines an MKNF model of KG .

THEOREM 4.19. ForKG a stratified ground MKNF knowledge base, let U∞KG
be

as specified in Definition 4.18 using any stratification and M = {I | I |=OBO,U∞KG
}.

—If M �= ∅, then M is an MKNF model of KG.
—If KG has an MKNF model, then this model is equal to M.

PROOF. Let P1
G, . . . ,P�

G be the stratification of PG used to compute U∞KG
.

Furthermore, let P≤i
G = ⋃

1≤ j≤i P
j

G and K≤i
G = (O,P≤ j

G ) for 1 ≤ i ≤ �, and
let Mi = {I | I |= OBO,Ui } for 0 ≤ i ≤ �. Each χi is a positive nondisjunctive
program so, by Theorem 4.13, it has at most one MKNF model that corresponds
to Mi by Theorem 4.16.

Each χi contains the rule K ξ ← if K ξ ∈ Ui−1, so Ui−1 ⊆ Ui . We now prove
property (*): for each K ξ ∈ KA(KG), i = λ(K ξ ), and each j > i , we have
Mi |= K ξ if and only if M j |= K ξ , or, equivalently, OBO,Ui |= ξ if and only if
OBO,U j |= ξ . If OBO,Ui |= ξ , since Ui ⊆ U j , then OBO,U j |= ξ as well. Assume
that OBO,Ui �|= ξ , but OBO,U j |= ξ . But then, since U j \Ui ⊆ [K ξ ]↑, we have
OBO,Ui∪[K ξ ]↑ |= ξ , which contradicts Condition (2) of Definition 4.17, so KG is not
stratified.

The definitions of Pi , Ni , and Mi straightforwardly imply property (**): for each
1 ≤ i ≤ � and each K ξ ∈ KA(KG) such that λ(K ξ ) < i , we have that Mi |= K ξ if
and only if K ξ ∈ Pi , and Mi �|= K ξ if and only if K ξ ∈ Ni .

We now prove by induction on 1 ≤ i ≤ � that both claims of this theorem hold
for Mi and K≤i

G . For the base case, note that K≤1
G contains only positive rules,

so the claim holds for i = 1 by Theorem 4.16. We next consider the induction
step.

(Claim 1) Assume that Mi �= ∅. Then Mi−1 �= ∅ as well so, by the induction as-
sumption, Mi−1 is an MKNF model of K≤i−1

G . Consider now an arbitrary rule
rG ∈ P≤i−1

G ; the rule is of the form (46). For each atom K B j ∈ body(rG) or
not B j ∈ body(rG), by Condition (1) of Definition 4.17 we have λ(K H ) ≥ λ(K B j ),
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so i > λ(K B j ). Hence, by (*) we have Mi−1 |= K B j if and only if Mi |= K B j ,
which implies that Mi−1 |= not B j if and only if Mi |= not B j ; but then, Mi−1 |= rG

implies Mi |= rG , so Mi |= P≤i−1
G . Consider now an arbitrary ground rule rG ∈ P i

G
of the form (46). For each atom not B j ∈ body(rG), by Condition (1) of Defini-
tion 4.17 we have λ(K H ) > λ(K B j ), so i > λ(K B j ); hence, by (*) we have
Mi−1 |= not B j if and only if Mi |= not B j ; together with (**), this implies that
Mi |= rG if and only if Mi |= rG[not, Pi , Ni ]. Thus, Mi |= P≤i

G and Mi |= K≤i
G .

Assume now that some M ′i � Mi exists such that (I ′, M ′i , Mi ) |= K≤i
G for

each I ′ ∈ M ′i . By (*), then (I ′, M ′i , Mi−1) |= K≤i−1
G for each I ′ ∈ M ′i as well.

Since Mi is an MKNF model of Ki
G , we have (I ′, M ′i , Mi ) �|= Ki

G for some
I ′ ∈ M ′i ; since Ki

G and K≤i
G coincide on P i

G and O, we have (I ′, M ′i , Mi ) �|= χi —
that is, M ′i �|= K ξ but Mi |= K ξ for some K ξ ∈ HA(KG) such that i > λ(K ξ ).
Since i > λ(K ξ ) and Ui−1 ⊆ Ui , we have Mi−1 |= K ξ . Now let (P ′i , N ′i ) be
the partition of KA(K≤i−1

G ) induced by M ′i , and let M ′′ = (I | I |= OBO,P ′i ). By
(*), Mi |= K ξ ′ iff Mi−1 |= K ξ ′ whenever i > λ(K ξ ′); furthermore, M ′′ can be
seen as a “projection” of M ′i on the K-atoms of level smaller than i so, since
M ′i �|= K ξ , we conclude M ′′ � Mi−1. Furthermore, by the definition of M ′′, for
each K ξ ′ ∈ KA(KG) with i > λ(K ξ ′), we have M ′′ |= K ξ ′ iff M ′i |= K ξ ′. But
then (I ′, M ′i , Mi−1) |= P≤i−1

G for each I ′ ∈ M ′i implies (I ′′, M ′′, Mi−1) |= P≤i−1
G

for each I ′′ ∈ M ′′; hence, (I ′′, M ′′, Mi−1) |= K≤i−1
G for each I ′′ ∈ M ′′ as well,

which contradicts the induction assumption that Mi−1 is an MKNF model of
K≤i−1

G .
(Claim 2) Assume that M ′i is an MKNF model of K≤i

G . Let (P ′i , N ′i ) be a partition
of KA(K≤i

G ) induced by M ′i , let P = P ′i ∩ KA(K≤i−1
G ) and let M = {I | I |= OBO,P}.

Clearly, M |= K≤i−1
G . Assume now that M is not an MKNF model of K≤i−1

G —that
is, that an MKNF interpretation M ′ � M exists such that (I ′, M ′, M) |= K≤i−1

G

for each I ′ ∈ M ′. Let (P ′, N ′) be the partition KA(K≤i−1
G ) induced by M ′, and let

K′G = (O,P ′G) where P ′G is defined as

P ′G =
{

K ξ ←| K ξ ∈ P ′ ∩ HA
(
K≤i

G

)} ∪ P i
G[not, P, N ].

Finally, let U = T∞K′G , let M ′′ = {I | I |= OBO,U }, and let (P ′′, N ′′) be the partition

of KA(K≤i
G ) induced by M ′′. Since PG is stratified, by an argument analogous to (*)

one can show that P ′′ ⊆ P ′i and P ′′ ∩ KA(K≤i−1
G ) = P ′; but then, since P ′ � P , we

have P ′′ � P ′i , so M ′′ � M ′i . Furthermore, (I ′′, M ′′, M ′i ) |= K≤i
G for each I ′′ ∈ M ′′,

which contradicts the assumption that M ′i is an MKNF model of K≤i
G ; thus, M is an

MKNF model of K≤i−1
G . By the induction assumption M = Mi−1, which implies

that M ′i |= K ξ iff Mi−1 |= K ξ for each K ξ ∈ KA(KG) such that i > λ(K ξ ).
Thus, M ′i |= χi and, consequently, M ′i |= Ki

G . Assume now that some M ′′i � M ′i
exists such that (I ′′, M ′′i , M ′i ) |= Ki

G for each I ′′ ∈ M ′′i . Clearly, M ′′i |= K ξ iff
M ′i |= K ξ for each K ξ ∈ KA(KG) such that i > λ(K ξ ); thus, (I ′′, M ′′i , M ′i ) |= K≤i

G

for each I ′′ ∈ M ′′i , which contradicts the fact that M ′i is an MKNF model of K≤i
G .

Hence, M ′i is an MKNF model of Ki
G , so M ′i = Mi by Theorem 4.13.

Journal of the ACM, Vol. 57, No. 5, Article 30, Publication date: June 2010.



30:34 B. MOTIK AND R. ROSATI

By Lemma 4.9 and Theorem 4.19,KG |=MKNF ψ for some modally closed MKNF
formula ψ if and only if OBO,U∞KG

|= ψ[U∞KG
]. Furthermore, we have the following

proposition for checking MKNF entailment of negative facts.

PROPOSITION 4.20. Let KG be a stratified ground MKNF knowledge base,
and let ψ be of the form ¬K ϕ where ϕ is a closed first-order formula. Then,
KG |=MKNF ψ iff KG is unsatisfiable or KG �|=MKNF K ϕ.

PROOF. Both directions are trivial if KG is MKNF unsatisfiable, so assume that
KG has a (unique) MKNF model M . For the (⇒) direction, KG |=MKNF ψ implies
M |= ψ , so M �|= ¬ψ and KG �|=MKNF K ϕ. For the (⇐) direction, KG �|=MKNF K ϕ
implies M �|= K ϕ, which implies M |= ψ ; since M is the only model of KG , we
conclude that KG |=MKNF ψ .

4.5. NONSTRATIFIED NONDISJUNCTIVE PROGRAMS. We finally consider the
case when KG is a nondisjunctive MKNF knowledge base for which a stratifi-
cation does not exist. For such programs, we must guess the subset P ⊆ KA(KG);
however, PG[not, P, N ] is a positive nondisjunctive MKNF program, for which
we can compute an MKNF model as explained in Section 4.3.

Let nondisjunctive-not-entails(KG, ψ) be the function defined as shown in Ta-
ble IV, but where Condition (5) is satisfied if and only if Ph = T∞K′G , where
K′G = (O,PG[not, P, N ]). We now show that this function is sound and com-
plete for nondisjunctive MKNF knowledge bases.

THEOREM 4.21. For KG a nonstratified nondisjunctive ground MKNF knowl-
edge base and ψ a modally closed MKNF formula, nondisjunctive-not-entails (KG, ψ)
returns true if and only if KG �|=MKNF ψ .

PROOF. From the proof of Theorem 4.10, one can see that Condition (5) in
Table IV ensures that M = {I | I |= OBO,Ph } satisfies the preference on
MKNF interpretations, which is the case iff M is the MKNF model of
K′G = (O,PG[not, P, N ]). Since K′G is positive and nondisjunctive, by Theorem
4.16, its model is characterized by T∞K′G . Thus, M satisfies the preference on MKNF
interpretations if and only if T∞K′G = Ph .

5. Undecidability of Reasoning in MKNF Knowledge Bases

An important design requirement for most description logics is decidability of
reasoning, as it has been empirically shown that, for decidable DLs, one can
often develop optimizations that make DL reasoning suitable for practical usage
[Horrocks 1998]. Consequently, decidability of reasoning has been an important
requirement for most existing combinations of DLs and ASP as well.

To make reasoning with MKNF knowledge bases decidable, the first-order frag-
ment DL must obviously be decidable. Furthermore, answer set programming
is decidable: the semantics of nonground programs is defined through grounding,
which reduces the reasoning problem to the propositional case.9 We show, however,

9 In order to justify such a definition, rules are typically required to be safe, as this makes their
interpretation independent of the universe �.
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that, even with a very simple language DL and safe rules, reasoning with MKNF
knowledge bases is undecidable. This may seem unsurprising, since even very sim-
ple DLs cannot be extended with safe first-order rules without losing decidability
[Levy and Rousset 1998]. This well-known result is, roughly speaking, due to the
fact that the existential quantification in the DL knowledge base can be used to
axiomatize existence of an infinite chain of objects, which allows one to encode a
range of undecidable problems using rules.

As explained in Section 3.4, however, the semantics of MKNF rules is quite
different from the semantics of first-order rule formalisms such as CARIN [Levy
and Rousset 1998] or SWRL [Horrocks et al. 2005b] in the treatment of existen-
tial quantifiers. Therefore, the undecidability proofs for first-order formalisms do
not carry over to MKNF rules. In fact, undecidability of reasoning with MKNF
knowledge bases has different causes: DL can make some concept A equivalent to
the infinite interpretation domain�, which makes the rules applicable to unnamed
individuals and can be exploited to encode undecidable problems.

Our proofs use reductions from the DOMINO TILING problem [Börger et al.
1996]. A domino system is a triple D = (D, H, V ), where D = {D1, . . . , Dn} is
a finite set of domino types, H : D→ 2D is the horizontal compatibility condi-
tion, and V : D→ 2D is the vertical compatibility condition. A D-tiling of an
infinite grid is a function t : IN× IN→ D such that t(i, j + 1) ∈ H (t(i, j)) and
t(i + 1, j) ∈ V (t(i, j)) for all i, j ∈ IN. Checking whether a D-tiling exists is un-
decidable in general [Börger et al. 1996]. In our proofs, we shall identify each
domino type D� with an atomic concept of the same name.

We identify two different sources of undecidability. Theorem 5.1 shows that using
conjunctive queries as generalized atoms in rule heads leads to undecidability. The
theorem uses the DL ALCN [Baader et al. 2007], which allows for conjunction
and disjunction of concepts, existential and universal quantifiers, and unqualified
number restrictions (see Section 2.1).

THEOREM 5.1. Let K = (O,P) be an MKNF knowledge base in which O
is an ALCN knowledge base and P contains a single positive safe MKNF rule
whose head is a generalized atom consisting of a conjunctive query. Then, checking
whether K is satisfiable is undecidable.

PROOF. Let D be any domino system, and let OD be the ALCN knowledge
base using the concepts D1, . . . , Dn and G, and the roles hor and ver, containing
the following TBox axioms:

� � ≤ 1 hor(47)
� � ≤ 1 ver(48)
� � G(49)
G � D1 � . . . � Dn(50)

Di 	 D j � ⊥ for each 1 ≤ i < j ≤ n(51)

Di � ∀hor.
⊔

d∈H (Di )

d for each 1 ≤ i ≤ n(52)

Di � ∀ver.
⊔

d∈V (Di )

d for each 1 ≤ i ≤ n(53)
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Furthermore, let PD be the program containing only the following safe MKNF
rule:

K[∃y, z, w : hor(x, y) ∧ ver(x, z) ∧ hor(z, w) ∧ ver(y, w)]← K G(x)(54)

Finally, let KD = (OD,PD). We now show that KD is satisfiable if and only if a
D-tiling exists; this clearly implies the claim of this theorem.

(⇐) Let t be a D-tiling, let� be a countably infinite set, and let τ : IN× IN→�
be a bijective mapping; we write τ (i, j) as τi, j . We define a first-order interpretation
I over � as follows.

G I = �
DI

� = {τi, j | t(i, j) = D�} for each domino tile D�

horI = {〈τi, j , τi+1, j 〉 | i, j ∈ IN}
verI = {〈τi, j , τi, j+1〉 | i, j ∈ IN}

It is clear that I satisfies axioms (47)–(50); furthermore, for each τi, j ∈ �, we have

I |= ∃y, z, w : hor(τi, j , y) ∧ ver(τi, j , z) ∧ hor(z, w) ∧ ver(y, w).(55)

Let M be the maximal set of first-order interpretations satisfying KD. Such a set
exists because it contains at least I . Clearly, M is an MKNF model of KD.

(⇒) Let M be a model of KD with a domain �, and let I be an arbitrarily
chosen first-order interpretation from M (such I exists since M �= ∅). We define
inductively τi, j , where i and j are nonnegative integers, as follows.

(1) Let τ0,0 be an arbitrarily chosen element of �.
(2) Assume that τi, j has been defined. Because of (49), we have G I = �, so

M |= K G(τi, j ); furthermore, (54) implies that (55) holds for τi, j . Thus, we
can define τi, j+1, τi+1, j , and τi+1, j+1 by choosing the elements of � for which
the following holds:

I |= hor(τi, j , τi+1, j )∧ ver(τi, j , τi, j+1)∧ hor(τi, j+1, τi+1, j+1)∧ ver(τi+1, j , τi+1, j+1)

These elements in item (2) are uniquely defined because of axioms (47) and
(48). Because of (50) and (51), for each τi, j there is exactly one domino tile D�

such that I |= D�(τi, j ), so we define a function t : IN× IN→ D as t(i, j) = D�.
Because of (52) and (53), it is clear that t is a D-tiling.

Theorem 5.1 may not come as a surprise: the rule (54) contains in the head a
conjunctive query that connects objects in a grid-like manner. It might be therefore
tempting to prohibit conjunctive queries in the head in hope of obtaining decidabil-
ity. The following theorem, however, identifies another source of undecidability:
negation as failure can be applied to the entire interpretation domain � even if the
rules are safe.

THEOREM 5.2. Let K = (O,P) be an MKNF knowledge base in which O
contains an axiom of the form � � C for C an atomic concept, and P contains
safe (not necessarily positive) rules in which all generalized atoms are standard
first-order atoms. Then, checking whether K is satisfiable is undecidable.

PROOF. Let D be any domino system, and let KD = (OD,PD) be the MKNF
knowledge base defined as follows. The DL knowledge base OD contains only the
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following TBox axiom:

� � G(56)

The program PD contains five sets of rules. Rules (57)–(58) ensure that each two
objects in � are connected either by hor or not hor. Furthermore, rules (59)–(60)
ensure that each element is connected to at least one other object by hor.

K hor(x, y) ∨K not hor(x, y)← K G(x), K G(y)(57)
false← K hor(x, y), K not hor(x, y)(58)

K has hor(x)← K hor(x, y)(59)
false← K G(x), not has hor(x)(60)

Similarly, rules (61)–(64) ensure that each object in � is connected to at least one
other object by ver.

K ver(x, y) ∨K not ver(x, y)← K G(x), K G(y)(61)
false← K ver(x, y), K not ver(x, y)(62)

K has ver(x)← K ver(x, y)(63)
false← K G(x), not has ver(x)(64)

The following rule “closes” the grid.

K hor(z, w)← K hor(x, y), K ver(x, z), K ver(y, w)(65)

The following rules label each element of the grid with exactly one domino type.

K D1(x) ∨ · · · ∨K Dn(x)← K G(x)(66)
false← K Di (x), K D j (x) for each 1 ≤ i < j ≤ n(67)

The following rules ensure horizontal and vertical compatibility between grid
nodes. ∨

d∈H (Di )

K d(x)← K Di (x), K hor(x, y) for each 1 ≤ i ≤ n(68)

∨
d∈V (Di )

K d(x)← K Di (x), K ver(x, y) for each 1 ≤ i ≤ n(69)

We now show that KD is satisfiable if and only a D-tiling exists.
(⇐) Let t be a D-tiling. Furthermore, let � = {ai, j | i, j ∈ IN}, and let M be

the set of first-order interpretations such that each I ∈ M satisfies the following
properties (*), for each i, j, k, l ∈ IN.

I |= hor(ai, j , ak,l) iff k = i + 1 and l = j
I |= not hor(ai, j , ak,l) iff k �= i + 1 or l �= j
I |= ver(ai, j , ak,l) iff k = i and l = j + 1
I |= not ver(ai, j , ak,l) iff k �= i or l �= j + 1
I |= D�(ai, j ) iff t(i, j) = D�

I |= G(ai, j ) ∧ has hor(ai, j ) ∧ has ver(ai, j )

Clearly, M �= ∅, M |= OD, and M |= PD. Assume now that some M ′ � M ex-
ists such that (I ′, M ′, M) |= KD for each I ′ ∈ M ′. By (56), we have G I ′ = �, so
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M ′ |= G(ai, j ) for each i, j ∈ IN. Since M is the maximal set of first-order inter-
pretations satisfying (*), there is at least one property ξ from the set of properties
(*) such that M |= ξ , but M ′ �|= ξ for some i, j ∈ IN. If ξ = hor(ai, j , ai+1, j ) or
ξ = not hor(ai, j , ak,l), then (57) is not true in M ′; similarly, if ξ = ver(ai, j , ai+1, j )
or ξ = not ver(ai, j , ak,l), then (61) is not true in M ′. If ξ = has hor(ai, j ), then (59)
is not true in M ′; similarly, if ξ = has ver(ai, j ), then (63) is not true in M ′. Finally,
if ξ = D�(ai, j ), then (66) is not true in M ′. Hence, such M ′ does not exist, so M is
an MKNF model of KD.

(⇒) Let M be an MKNF model of KD with a domain set �. By (56), we have
M |= G(α) for each α ∈ �. We define τi, j , where i and j are nonnegative integers,
inductively as follows.

(1) Let τ0,0 be an arbitrarily chosen element of �.
(2) Assume that τi, j has been defined. Because of (60), we have M |= has hor(τi, j ).

The rule (59) is the only one that contains has hor in the head, so has hor(τi, j )
must be derived through (59) for x = τi, j . Hence, we can pick some τi+1, j such
that M |= hor(τi, j , τi+1, j ). Similarly, because of (63) and (64), we can pick
some τi, j+1 such that M |= ver(τi, j , τi, j+1). Finally, by repeating the argument
for τi+1, j , we can pick some τi+1, j+1 such that M |= ver(τi+1, j , τi+1, j+1). By
rule (65), M |= hor(τi, j+1, τi+1, j+1).

Because of (66) and (67), for each τi, j there is exactly one domino tile D�

such that M |= D�(τi, j ), so we define a function t : IN× IN→ D as t(i, j) = D�.
Because of (68) and (69), it is clear that t is a D-tiling.

We used in the proof of Theorem 5.2 disjunctive rules for the sake of clarity.
Eiter et al. [2004] showed that positive disjunctive rules can be transformed to
nondisjunctive rules with negation as failure. By applying this transformation to
(57), (61), (66), (68), and (69), Theorem 5.2 can be sharpened to the case when P
is a nondisjunctive program.

We finish this section with a note that, in their unrestricted form, most nonmono-
tonic formalisms are not even semidecidable. We conjecture that the same is the
case for MKNF knowledge bases; however, we do not have a formal proof yet.

6. Decidable Cases and Computational Complexity

We now investigate the possibilities for obtaining a decidable formalism. In
Section 6.1, we propose the notions of DL-safety and admissibility that are suffi-
cient to make reasoning decidable. We then investigate the complexity of reasoning
with DL-safe MKNF knowledge bases. In particular, we consider combined com-
plexity in Section 6.2 and data complexity in Section 6.3.

6.1. DL-SAFETY AND ADMISSIBILITY. Undecidability of reasoning with
MKNF knowledge bases arises because rules can be applied to all objects in
the infinite domain �. To the best of our knowledge, such problems are solved in
all existing combinations of DLs and rules by employing some form of syntactic
safety of the rules. The main idea is to restrict the applicability of the rules only to
the explicitly named part of �—that is, only to the individuals that are explicitly
mentioned by name in the knowledge base. We now adapt this notion to MKNF
knowledge bases.
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Definition 6.1 (DL-Safety). We assume that the signature � contains a subset
�DL ⊆ � such that ≈ ∈ �DL . We call the predicates in �DL DL-predicates and
assume that DL refers only to such predicates; furthermore, we call the predicates
in � \�DL non-DL-predicates.

A generalized atom ξ is a DL-atom if it contains only predicates of �DL ;
furthermore, ξ is a non-DL-atom if it is of the form (¬)P(t1, . . . , tn) where P is a
non-DL-predicate.10 A modal atom K ξ is a DL-K-atom or a non-DL-K-atom if ξ
has the respective property. Similarly, a modal atom not ξ is a DL-not-atom or a
non-DL-not-atom if ξ has the respective property.

An MKNF rule r is DL-safe if each modal atom in it is a DL-K-atom, a DL-not-
atom, a non-DL-K-atom, or a non-DL-not-atom, and if each variable in r occurs
in the body of r in some non-DL-K-atom. An MKNF knowledge base K = (O,P)
is DL-safe if each rule r ∈ P is DL-safe.

Consider again the MKNF knowledge base from Section 3.5. Rule (37) is not
DL-safe: both seasideCity and portCity are DL-predicates, so the variable x does
not occur in a body non-DL-K-atom. The rule can be made DL-safe if we introduce
a special non-DL-predicate O , add the assertion K O(a) for each individual a, and
modify the rule into

K seasideCity(x)← K portCity(x), not¬seasideCity(x), K O(x).(70)

The atom K O(x) acts as a guard that makes the rule applicable only to the indi-
viduals explicitly mentioned by name in the knowledge base. Motik et al. [2005]
have discussed in-depth the semantic effects of such a transformation in the case
of first-order rules. In MKNF, the rules usually cannot be applied to the individuals
that are not explicitly named (see the discussion in Section 3.4) so, for all practical
intents and purposes, this transformation does not affect the semantics of MKNF
rules significantly.

A DL-safe knowledge base can be grounded with respect to the set of constants
occurring in it without affecting its semantics.

PROPOSITION 6.2. Let K = (O,P) be a DL-safe MKNF knowledge base, and
let KG = (O,PG) be the ground MKNF knowledge base where PG = gr(P, OK)
and OK is as specified in Definition 3.3. Then, the MKNF models of K and KG
coincide.

PROOF. We first introduce several definitions. The �-equivalence ∼ induced
by an MKNF interpretation M is the relation on � such that, for each a, b ∈ �,
we have a ∼ b iff M |= K a ≈ b. Clearly, ∼ is an equivalence relation on �. For
each a ∈ �, let a∼ be a constant chosen from the equivalence class of a in ∼ such
that the constants from OK are preferred over the constants from � \ OK. For α a
generalized atom or a rule, α∼ is the result of replacing in α each constant a with
a∼. Finally, �∼ is the set containing each ground generalized non-DL-atom ξ such
that ξ∼ contains a constant from � \ OK.

(⇒) Let M be an MKNF model of K, and let ∼ be the �-equivalence in-
duced by M . We next show the property (*): M �|= K A for each A ∈ �∼. As-
sume that M |= K A for some A ∈ �∼ and consider M ′ = M ∪ {I } where I is an

10 Note that atoms containing both DL- and non-DL-predicates are neither DL- nor non-DL-atoms.
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interpretation obtained by choosing any interpretation from M and flipping the
truth value of each B ∈ �∼ such that M |= K B. Now M ′ |= KO since all B ∈ �∼
are non-DL-atoms. Furthermore, for each B ∈ �∼, since B is a possibly negated
first-order atom, M ′ �|= K B. Finally, for each ground generalized atom B such that
B �∈ �∼, we have M |= K B iff M ′ |= K B. Consider now an arbitrary rule r ∈ P
and its arbitrary ground instance rG with respect to �. If rG does not contain an
atom from �∼, then clearly M ′ |= rG . Otherwise, since r is DL-safe, rG contains an
atom K B in the body such that B ∈ �∼; furthermore, M ′ �|= K B, so M ′ |= rG as
well. Hence, (I ′, M ′, M) |= K for each I ′ ∈ M ′, which contradicts our assumption
that M is an MKNF model of K. Thus, property (*) holds.

Clearly, M |= KG . Assume now that M is not an MKNF model of KG—that
is, that an MKNF interpretation M ′′ � M exists such that (I ′′, M ′′, M) |= KG for
each I ′′ ∈ M ′′. Now KG does not contain a constant from � \ OK, so we can
make the following assumption (**): if M ′′ |= A for some generalized atom A,
then M ′′ |= B for each generalized atom B such that A∼ = B∼. Due to (*) and
M ′′ � M , we have M ′′ �|= K A for each A ∈ �∼. Consider now an arbitrary rule
r ∈ P and its arbitrary ground instance rG with respect to�. We have the following
possibilities.

—rG contains an atom A such that A ∈ �∼. Since r is DL-safe, rG contains an atom
K B in the body such that B ∈ �∼. Since M ′′ �|= K B, we have (I ′′, M ′′, M) |= rG
for each I ′′ ∈ M ′′.

—rG does not contain an atom from �∼. Let r ′G = (rG)∼; furthermore, let p and
p′ be the ground rules obtained from rG and r ′G , respectively, by replacing each
not-atom with its value in M . Since (I ′′, M ′′, M) |= PG for each I ′′ ∈ M ′′, we
have (I ′′, M ′′, M) |= p′ for each I ′′ ∈ M ′′ as well. Due to (**), we then have
(I ′′, M ′′, M) |= p for each I ′′ ∈ M ′′ as well.

Thus, (I ′′, M ′′, M) |= K for each I ′′ ∈ M ′′, which contradicts the assumption that
M is an MKNF model of K.

(⇐) Let M be an MKNF model of KG , and let ∼ be the �-equivalence induced
by M . Since the constants from� do not occur in KG , we have M �|= K A for each
A ∈ �∼. Consider now an arbitrary rule r ∈ P and its ground instance rG with
respect to �. We have the following possibilities.

—rG contains an atom A such that A ∈ �∼. Since r is DL-safe, then rG contains
an atom K B in the body such that B ∈ �∼. Since M �|= K B, we have M |= rG .

—rG does not contain an atom from �∼. Let r ′G = (rG)∼. Since r ′G ∈ PG and
M |= PG , we clearly have M |= rG .

Thus, (I, M, M) |= K for each I ∈ M . Assume now that an MKNF interpreta-
tion M ′ � M exists such that (I ′, M ′, M) |= K for each I ′ ∈ M ′. Then clearly
(I ′, M ′, M) |= KG as well, which contradicts the assumption that M is an MKNF
model of KG .

We now formulate precise conditions under which reasoning with MKNF knowl-
edge bases is decidable.

Definition 6.3 (Admissibility). Let DL be a description logic, let B be a gener-
alized atom base, and let H be a subset of B. Then, DL, B, and H are admissible if,
for each O ∈ DL, each finite set S ⊆ H of ground generalized atoms, each finite
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set N of assertions of the form a �≈ b, and each generalized atom ξ ∈ B, check-
ing whether O ∪ S ∪ N |= ξ is decidable. Let CDL,B,H denote the computational
complexity of the latter problem.

An MKNF knowledge base K = (O,P) over DL and B is admissible if DL, B,
and H are admissible, K is DL-safe and finite, and each rule in P contains only the
generalized atoms from H in its head.

We shall use the function not-entails(KG, ψ) defined in Table IV to obtain a
decision procedure for reasoning with admissible MKNF knowledge bases. In
Conditions (2), (3), and (5a) we need to decide MKNF entailments of the form
O ∪ S |= ξ , where S is a set of ground generalized atoms, and ξ is a ground
generalized atom. A minor problem is that S can contain both DL- and non-
DL-atoms, which is not directly supported by DL. These problems, however,
can be reduced to standard entailments supported by DL. For an equivalence
relation ∼ on the constants of the signature of KG and a constant a, let a∼ be a
uniquely chosen constant from the equivalence class of a. For a generalized atom
α, let α∼ be the result of replacing in α each constant a with a∼; furthermore, let
(K ξ )∼ = K ξ∼ and (not ξ )∼ = not ξ∼. For S a set of generalized or modal atoms,
let S∼ = {α∼ | α ∈ S}. Finally, for a DL knowledge base O, let O∼ be the result of
(i) replacing in O each constant a with a∼ and (ii) appending an axiom a∼ �≈ b∼
for each a∼ �= b∼.

PROPOSITION 6.4. Let O be a DL knowledge base, let S be a set of ground
generalized atoms, and let ξ be a ground generalized atom such that ξ and all
atoms in S are either DL- or non-DL-atoms. Furthermore, let S′ and S′′ be the
subsets of DL-atoms and non-DL-atoms of S, respectively. Then, O ∪ S �|= ξ iff an
equivalence relation ∼ on the constants in O ∪ S ∪ {ξ} exists such that

(1) O∼ ∪ S′∼ is satisfiable, and
(2) S′′∼ does not contain a complementary pair of non-DL-atoms, and
(3) O∼ ∪ S′∼ �|= ξ∼ if ξ is a DL-atom, or ξ∼ �∈ S′′∼ if ξ is a non-DL-atom.

PROOF. It is trivial to see that O ∪ S �|= ξ if and only if an equivalence ∼ on
the constants exists such that O∼ ∪ S∼ �|= ξ∼. If the latter condition is true, then
O∼ ∪ S′∼ and S′′∼ must be satisfiable, and ξ∼ follows from either the DL- or the
non-DL-part of O∼ ∪ S∼. If ξ is a DL-atom, then we must check O∼ ∪ S′∼ �|= ξ∼;
otherwise, if ξ is a non-DL-atom, we can simply check whether ξ∼ �∈ S′′∼. The
converse direction can be easily proved in the same manner.

Hence, if only positive generalized atoms are used in P , then DL must support
standard ABoxes; if P contains also negative generalized atoms, then DL must
support negative ABox assertions; if PG contains generalized atoms consisting
of conjunctive queries in the body, then DL must additionally support answering
conjunctive queries. Finally, if PG contains generalized atoms consisting of con-
junctive queries in the head, then the set S can contain Boolean conjunctive queries.
We can decide O ∪ S |= ξ by skolemizing the queries in S—that is, by replacing
in each query each nondistinguished variable with a fresh individual and dropping
the existential quantifier.

We are now ready to show that reasoning with admissible MKNF knowledge
bases is decidable.
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THEOREM 6.5. For an admissible MKNF knowledge base K and a ground
generalized atom A, checking whether K |=MKNF (¬) K A is decidable.

PROOF. Since K is DL-safe, by Proposition 6.2 K has the same MKNF mod-
els as its grounding KG with respect to OK. Furthermore, K is finite, so KG is
finite as well, and so is the set KA(KG) (see Definition 4.1). Thus, we can decide
K |=MKNF (¬) K A using the function not-entails(KG, ψ) defined in Table IV, pro-
vided that the first-order problems in Conditions (1), (2), (3), and (5a) are decidable.
All of these problems involve deciding entailments of the form O ∪ S ∪ N |= ξ ,
where S is a set of ground generalized atoms from HA(KG), N is a set of ground
inequalities, and ξ is a ground generalized atom from KA(KG). Since K is DL-
safe, these problems can be solved using Proposition 6.4; furthermore, since K is
admissible, these checks are decidable.

6.2. COMBINED COMPLEXITY. In this section, we determine the combined com-
plexity bounds of checking whether K |=MKNF (¬) K A, where K is an admissible
MKNF knowledge base and A ∈ B is a ground generalized atom. Such complexity
is measured in |K| + |A| (i.e., the size of both the knowledge base and the query),
and it clearly depends on the complexity of reasoning in DL. SHOIN is a widely
used DL, mainly because it provides the formal underpinning of the OWL DL
variant of the Web Ontology Language (OWL) [Patel-Schneider et al. 2004]. This
DL is known to be NEXPTIME-complete [Tobies 2001], so we provide complexity
estimates based on the assumption that DL is an NEXPTIME-complete language.
Furthermore, we show that, even if DL is of lower complexity, the combined com-
plexity of reasoning with MKNF knowledge bases stays the same, so we do not
consider simpler DLs explicitly.

PROPOSITION 6.6. For K = (O,P) an admissible MKNF knowledge base, de-
ciding K �|=MKNF (¬) K A is NEXPTIMENP-complete in |K| + |A|, provided that the
DL-predicates are bounded in arity and CDL,B,H ⊆ NEXPTIME.

PROOF. By Proposition 6.2, the MKNF models of K and its grounding KG with
respect to OK coincide. Thus, we first compute the grounding PG of P , which re-
quires exponential time. By Theorem 4.10, we can check KG �|=MKNF (¬) K A using
not-entails(KG, ψ). Thus, we guess a subset P ⊆ KA(KG), which requires nondeter-
ministic exponential time. Condition (1) holds iff OBO,Ph �|= false, and Condition (3)
holds iff OBO,Ph �|= ξ for exponentially many ξ . All of these checks can be solved
using Proposition 6.4: we guess an equivalence ∼ on the constants in OK, we
separate the atoms from Ph into DL-K-atoms P ′h and non-DL-K-atoms P ′′h , and we
then check whether OBO∼,P ′h∼ is satisfiable, whether {K A, K¬A} �⊆ P ′′h ∼ for each
ground first-order non-DL-atom A, and whether OBO∼,P ′h∼ �|= ξ∼ or K ξ∼ �∈ P ′′h ∼.
By the assumption on the complexity of reasoning in DL, these checks can be
performed in nondeterministic exponential time. Condition (4) can be checked in
exponential time. Furthermore, we can check complements of Conditions (2) and
(5) using an oracle that receives Ph as input. In the worst case, Ph = HA(KG), so
Ph can be exponential in |K|; furthermore, if |Ph| is not exponential in |K|, we can
pad it to make it exponential. Thus, the input of the oracle is always exponential
in |K|. Since the arity of the predicates in DL is bounded, the number of such
different ground atoms is polynomial in |K|. Hence, the set P ′h of the predicates
from DL is polynomial in |K|. Thus, Conditions (2) and (5a) can be checked in
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nondeterministic, and Condition (5b) in polynomial time in the size of the oracle
input, so the oracle runs in NP. Finally, if the query is of the form K A, then
Condition (6) holds if OBO,Ph �|= A, which can be decided in the same way as
Condition (3); in contrast, if the query is of the form ¬K A, then Condition (6)
holds if OBO,Ph |= A, which can be decided in the same way as Condition (2).
Hence, our algorithm can be implemented in NEXPTIMENP. Hardness is inherited
from disjunctive datalog under stable model semantics [Eiter et al. 1997a].

W3C has recently released a revision of OWL DL, called OWL 2. The formal
underpinnings of OWL 2 are provided by the DL SROIQ [Kutz et al. 2006],
which was recently shown to be N2EXPTIME-complete [Kazakov 2008]. The upper
bound of the complexity of reasoning with an MKNF knowledge base is then given
by the following lemma. For the sake of brevity, we do not present the lower bound;
however, we conjecture that the lower bound actually matches the upper one.

PROPOSITION 6.7. Let K = (O,P) be an admissible MKNF knowledge base
such that the DL-predicates are bounded in arity and CDL,B,H ⊆ N2EXPTIME.
Then, K �|=MKNF (¬) K A can be decided by solving a problem in N2EXPTIME and
another problem in coN2EXPTIME.

PROOF. As in the proof of Proposition 6.6, HA(KG) is exponential in |K|, so the
number of different sets P and P ′ that not-entails(KG, ψ) might need to examine
is doubly exponential. We can check Conditions (1) and (3) by solving a doubly
exponential number of problems in N2EXPTIME, which is equivalent to solving
just one problem in N2EXPTIME. Similarly, we can check Conditions (2) and (5a)
by solving a doubly exponential number of problems in coN2EXPTIME, which is
equivalent to solving just one problem in coN2EXPTIME. Condition (6) can be
added to one of these two groups, depending on the polarity of the query. Finally,
Conditions (4) and (5b) can be checked in doubly exponential time.

As we discuss in Section 6.3, in typical applications of MKNF knowledge bases,
we expect the data complexity to provide a more useful complexity estimate. Hence,
for the sake of brevity, we do not provide combined complexity estimates for the
cases when MKNF rules have simpler structure.

6.3. DATA COMPLEXITY. As we discussed in Section 6.1, DL-safety makes the
rules of an MKNF knowledge base applicable only to the explicitly named individ-
uals. Therefore, the primary applications of MKNF rules are in answering queries
over individuals, rather than modeling the conceptual part of a knowledge base. In
such applications, the size of the data is usually several orders of magnitude larger
than the size of the conceptual part, so data complexity—a complexity estimate un-
der the assumption that the rules are fixed but the data varies—may be a much better
indicator of how an algorithm scales to large amounts of data [Vardi 1982]. There-
fore, in this section, we conduct a detailed data complexity analysis of reasoning
with admissible MKNF knowledge bases for different types of MKNF rules.

For a ground generalized atom A ∈ B and an admissible MKNF knowledge base
K = (O,P) where O consists of a TBox T and an ABox A, data complexity of
K |=MKNF (¬) K A is the complexity of the problem measured under the assumption
that (i)A is extensionally reduced—that is, it contains only atomic formulae, (ii) the
sizes of the TBox T , the query A, and the rules in P that are not facts are bounded,
and (iii) the size of A is bounded.
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TABLE V. DATA COMPLEXITY OF ENTAILMENT CHECKING IN ADMISSIBLE MKNF
KBS

∨ not no DL CDL,B,H = PTime CDL,B,H = coNP
1 no no PTime PTime coNP/coDP
2 no stratified PTime PTime �

p
2

3 no yes coNP coNP 
p
2

4 yes no coNP/p
2 coNP/p

2 coNP/p
2

5 yes yes 
p
2 

p
2 

p
2

Note: The second column and third column determine the expressivity of the rule
component (i.e., whether the rules are disjunctive and whether they contain not), and
the fourth, fifth, and sixth column show the data complexity of MKNF entailment
checking when the DL component is absent, and when it is complete for PTime and
coNP with respect to data complexity, respectively.

Data complexity of reasoning with admissible MKNF knowledge bases
clearly depends on the data complexity CDL,B,H of the first-order problems
O ∪ S ∪ N |= ξ , where O ∈ DL, S ⊆ H, N is a set of ground inequalities, and
ξ ∈ B. Data complexity of answering conjunctive queries in the DL SHOIQ
is coNP-complete [Ortiz et al. 2008]; furthermore, expressive DL fragments (e.g.,
Horn-SHIQ [Hustadt et al. 2007], EL++ [Baader et al. 2005]) have been proposed
for which the assertion checking problem can be solved in polynomial time. Most
DLs used nowadays can be classified into one of these two categories, so in this
section we consider the cases when CDL,B,H is PTime and coNP. There are DLs
that have even lower data complexity; for example, answering conjunctive queries
in DL-Lite is data complete for LOGSPACE [Calvanese et al. 2007a]. For MKNF
knowledge bases with such DLs, the data complexity of reasoning is dominated by
the rules, so the overall complexity then coincides with the case when CDL,B,H is
PTime.

Table V summarizes the data complexity of checking whetherK |=MKNF ψ , where
ψ = (¬) K A and A ∈ B is a ground generalized atom. If the complexity differs
for ψ = K A and ψ = ¬K A, the table contains two entries. All results are com-
pleteness results. For comparison, the table also shows the well-known complexity
results for ordinary answer set programming (cf. Eiter et al. [1997a] and Dantsin
et al. [2001]).

In our hardness proofs for CDL,B,H = coNP, we present reductions where DL
is the logic of function-free universally quantified rules interpreted in first-order
logic. It is well known that checking entailment of ground facts for such a DL
is data complete for coNP. Furthermore, we often use a simple encoding of a
propositional formula ϕ into a set of universally quantified first-order implications
ϒ ∪ μ(ϕ) as defined in Table VI, which exhibits the following useful property.

LEMMA 6.8. A propositional formula ϕ is satisfiable if and only if

K [ϒ ∪ μ(ϕ)] |=MKNF ¬K F(uϕ).

PROOF. Each subformula ψ of ϕ is represented in μ(ϕ) by a distinct constant
uψ . The implications in ϒ ensure that, whenever I |= μ(ϕ) ∪ ϒ for some first-
order interpretation I , either I |= T (uψ ) or I |= F(uψ ) but not both, and that
T (uψ ) and F(uψ ) are defined according to the semantics of Boolean connectives.

Assume now that ϕ is satisfiable, and consider an arbitrary assignment for the
propositional variables of ϕ that satisfies ϕ. Let I be the first-order interpretation
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TABLE VI. DEFINITIONS OF μ AND ϒ

μ(x) = {var(ux )}
μ(ψ1 ∧ ψ2) = {and(uϕ, uψ1 , uψ2 ), var(uϕ), var(uψ1 ), var(uψ2 )} ∪ μ(ψ1) ∪ μ(ψ2)
μ(ψ1 ∨ ψ2) = {or(uϕ, uψ1 , uψ2 ), var(uϕ), var(uψ1 ), var(uψ2 )} ∪ μ(ψ1) ∪ μ(ψ2)

μ(¬ψ) = {not(uϕ, uψ ), var(uϕ), var(uψ )} ∪ μ(ψ)

Note: uψ is a constant that is unique and distinct for each formula ψ .

ϒ

T (x) ∨ F(x) ⊂ var(x) F(y) ⊂ not(x, y) ∧ T (x)
false ⊂ T (x) ∧ F(x) T (x) ⊂ not(x, y) ∧ F(y)

T (x) ⊂ and(x, y, z) ∧ T (y) ∧ T (z) T (x) ⊂ or(x, y, z) ∧ T (y)
T (y) ⊂ and(x, y, z) ∧ T (x) T (x) ⊂ or(x, y, z) ∧ T (z)
T (z) ⊂ and(x, y, z) ∧ T (x) T (y) ∨ T (z) ⊂ or(x, y, z) ∧ T (x)

Note: All implications are implicity universally quantified.

such that I |= T (uψ ) iff the subformula ψ of ϕ is true in the assignment. It is
straightforward to see that I |= μ(ϕ) ∪ ϒ and I |= T (uϕ), so I �|= F(uϕ). Let
M = {I | I |= μ(ϕ) ∪ ϒ}. Since I ∈ M , we have M �= ∅, so M is the only MKNF
model of K [ϒ ∪ μ(ϕ)]; furthermore, M |= ¬K F(uϕ).

Conversely, if ϒ ∪ μ(ϕ) |=MKNF ¬K F(uϕ), then an MKNF model M of
ϒ ∪ μ(ϕ) and an interpretation I ∈ M exist such that I �|= F(uϕ). But then, I
defines an assignment for the propositional variables of ϕ that satisfies ϕ.

We now prove the data complexity claims from Table V for different types of
MKNF knowledge bases. For easier reference, we label each proposition with the
row of the table that the proposition pertains to. For example, (1+ PTime) means
that the proposition refers to row 1 of the table and the case CDL,B,H = PTime.
In all membership results, the first step is to compute the grounding PG of P
with respect to OK; since the nonground rules in P are bounded in size, |PG | is
polynomial in |P|.

PROPOSITION 6.9 (1+ PTime). For CDL,B,H = PTime and P a nondisjunc-
tive positive program, deciding K |=MKNF (¬) K A is PTime-complete in data
complexity.

PROOF. By Theorem 4.16, we can perform the check by computing ψ[T∞KG
],

where ψ = (¬) K A. The computation of T∞KG
requires at most |PG | calls to an

oracle running in PTime, and to compute ψ[T∞KG
] we need another call to the

oracle. Hence, the algorithm can be implemented in PTime. Hardness carries over
from positive datalog programs (cf. Dantsin et al. [2001]).

PROPOSITION 6.10 (1+ coNP). ForCDL,B,H = PTime andP a nondisjunctive
positive program, deciding whether K |=MKNF K A is coNP-complete, and deciding
whether K |=MKNF ¬K A is coDP-complete in data complexity.

PROOF (K |=MKNF K A). Membership in coNP carries over from the case of pos-
itive programs, so we defer it to Proposition 6.15. Hardness is inherited from
DL.

(K |=MKNF ¬K A). By Proposition 4.20, K |=MKNF ¬K A iff K |=MKNF false or
K �|=MKNF K A. By the first claim of this proposition, the first check is in coNP and
the second check is in NP, so the algorithm is in coDP.
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For hardness, we use the DP-complete SAT-UNSAT problem [Papadimitriou
1993]: given two propositional formulae ϕ and ψ , the problem is to decide whether
ϕ is satisfiable and ψ is unsatisfiable. In our proof, we use the coDP-hard com-
plement of this problem: decide whether ϕ is unsatisfiable or ψ is satisfiable.
Without loss of generality, we can assume that ϕ and ψ do not share propositional
variables. For an arbitrary such pair of formulae, let Kϕ,ψ = (Oϕ,ψ,Pϕ,ψ ) be the
MKNF knowledge base where Oϕ,ψ contains ϒ ∪ μ(ϕ) ∪ μ(ψ) (see Table VI for
the definitions of ϒ and μ) and Pϕ,ψ contains the MKNF rules (71)–(72), and the
facts (73)–(74).

false← K F(x), K Nϕ(x)(71)
K q ← K F(x), K Nψ (x)(72)

K Nϕ(uϕ)←(73)
K Nψ (uψ )←(74)

The formulae ϕ and ψ do not share variables. Therefore, by Lemma 6.8 we have
that KOϕ,ψ |=MKNF K F(uϕ) iff ϕ is unsatisfiable, and KOϕ,ψ |=MKNF K F(uψ ) iff
ψ is unsatisfiable; we denote this property as (*). Also, Kϕ,ψ is nondisjunctive and
positive so it has at most one MKNF model. We now show that ϕ is unsatisfiable
or ψ is satisfiable iff Kϕ,ψ |=MKNF ¬K q .

(⇒) Assume that ϕ is unsatisfiable. Then, due to (*), (71), and (73), the knowl-
edge baseKϕ,ψ is MKNF unsatisfiable, soKϕ,ψ |=MKNF ¬K q. Furthermore, assume
that ϕ is satisfiable and ψ is satisfiable. Then, due to (*), Kϕ,ψ has a single MKNF
model M such that M �|= K F(uϕ) and M �|= K F(uψ ); furthermore, M �|= K q as
well, so M |= ¬K q and Kϕ,ψ |=MKNF ¬K q .

(⇐) We show the contrapositive. Assume that ϕ is satisfiable and ψ is unsatisfi-
able. Then, due to (*), Kϕ,ψ has a single MKNF model M such that M �|= K F(uϕ)
and M |= K F(uψ ). By (72) and (74), then we have M |= K q , so M �|= ¬K q and
Kϕ,ψ �|=MKNF ¬K q .

PROPOSITION 6.11 (2+ PTime). For CDL,B,H = PTime andP a stratified pro-
gram, deciding K |=MKNF (¬) K A is PTime-complete in data complexity.

PROOF. By Theorem 4.19, we can perform the check by computing ψ[U∞KG
],

where ψ = (¬) K A. Thus, the computation of U∞KG
requires a polynomial number

of computations of T∞Ki
G
, each of which can be performed in PTime by Proposition

6.9. The computation of ψ[U∞KG
] requires another call to an oracle in PTime. Hence,

the algorithm can be implemented in PTime. Hardness carries over from positive
datalog programs (cf. Dantsin et al. [2001]).

PROPOSITION 6.12 (2+ coNP). For CDL,B,H = coNP and P a stratified pro-
gram, deciding K |=MKNF (¬) K A is �

p
2 -complete in data complexity.

PROOF. By Theorem 4.19, we can perform the check by computing ψ[U∞KG
],

where ψ = (¬) K A. Thus, the computation of U∞KG
requires a polynomial number

of calls to an oracle running in NP and the computation of ψ[U∞KG
] requires another

call to the oracle. Hence, the algorithm can be implemented in �
p
2 .
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For hardness, we present a reduction from the �
p
2 -complete DAGS(SAT) prob-

lem [Gottlob 1995]. An instance of the problem is a triple D = 〈L , G, ϕR〉 where
L is the set of propositional linking variables, G = 〈V, E〉 is a directed acyclic
graph, and ϕR ∈ V is a distinguished result node. The vertices in G are proposi-
tional formulae—that is, V = {ϕ1, . . . , ϕn}. Each ϕi is associated with a distinct
linking variable xi , so L and V have the same number of elements; furthermore, in
addition to private variables not occurring in any other formula, a formula ϕi ∈ V
contains all linking variables x j that correspond to some ϕ j such that (ϕ j , ϕi ) ∈ E .
A valuation νD : L → {true, false} is defined inductively as follows: νD(xi ) = true
if and only if the propositional formula ϕ′i , obtained by replacing in ϕi the linking
variables with their values under νD, is satisfiable (since G is a direct acyclic graph,
this induction is correctly defined). The problem is to decide whether νD(xR) = true,
where xR is the linking variable corresponding to ϕR . Without loss of generality,
we assume that j < i for each (ϕ j , ϕi ) ∈ E—that is, the index of each node in G
is larger than the indices of all of its predecessors.

Given an instance D of DAGS(SAT), let KD = (OD,PD) be the MKNF knowl-
edge base such that OD = ϒ ∪⋃

ϕ∈V μ(ϕ) (see Table VI for the definitions of ϒ

and μ), and PD contains the following rules.

K T (y)← K formula(x, y), not F(x)(75)
K F(y)← K formula(x, y), K F(x)(76)

K formula(uxi , uϕi )← for each ϕi ∈ V and xi the linking variable of ϕi(77)

The graph G is acyclic, and so are the assertions of the form (77). By
Definition 4.17, all ground rules in gr(PD, OK) where x is mapped to a constant
other than uxi or y is mapped to a constant other than uϕi are not relevant. KD is
therefore a stratified MKNF knowledge base so, by considering each 1 ≤ i ≤ n in
succession, we can determine the truth values of K T (uϕi ) and K F(uϕi ), and then
determine the truth values of K T (uxi ) and K F(uxi ) through rules (75)–(77). We
now prove by induction on i that νD(xi ) = true iff KD |=MKNF K T (uxi ) for each
linking variable xi ; for xi = xR , this implies that KD exactly encodes DAGS(SAT).

For i = 1, the formula ϕ1 contains no linking variables. Since the formulae
in V do not share private variables, KD |=MKNF K F(uϕ1 ) iff νD(x1) = false by
Lemma 6.8. But then, (75) ensures that KD |=MKNF K T (ux1 ) iff νD(x1) = true, and
(76) ensures that KD |=MKNF K F(ux1 ) iff νD(x1) = false. Furthermore, for some
i ≥ 1, the rules (75)–(76) determine the values of the linking variables for i + 1,
so the inductive step holds in exactly the same way.

PROPOSITION 6.13 (3+PTime). For CDL,B,H = PTime and P a nondis-
junctive program, deciding K |=MKNF (¬) K A is coNP-complete in data
complexity.

PROOF. By Theorem 4.21, we can compute nondisjunctive-not-entails (KG, ψ)
with ψ = (¬) K A and complement the result. We guess a subset P ⊆ KA(KG).
Since K′G = (O,PG[not, P, N ]) is a nondisjunctive positive program, the compu-
tation of T∞K′G can be performed in polynomial time. Hence, all conditions can be
verified in polynomial time, so the algorithm runs in NP. Hardness carries over
from nondisjunctive datalog programs under stable model semantics (cf. Dantsin
et al. [2001]).
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PROPOSITION 6.14 (3+ coNP). For CDL,B,H = coNP and P a nondisjunctive
program, deciding K |=MKNF (¬) K A is 

p
2 -complete in data complexity.

PROOF. Membership carries over from the case of general programs and is
deferred to Proposition 6.16. To prove hardness, we use the �

p
2 -complete 2-QBF

problem [Stockmeyer 1976]: decide whether a second-order propositional formula
ϕ = ∃x1, . . . , xn∀y1, . . . , ym : ψ is satisfiable, where ψ is a quantifier-free propo-
sitional formula over the variables x1, . . . , xn, y1, . . . , ym .

For an arbitrary formula ϕ of the mentioned form, let Kϕ = (Oϕ,Pϕ) be the
MKNF knowledge base where Oϕ = ϒ ∪ μ(ψ) (see Table VI for the definitions
of ϒ and μ) and Pϕ contains the following rules.

K T (x)← K exvar(x), not F(x)(78)
K F(x)← K exvar(x), not T (x)(79)

K exvar(uxi )← for each existentially quantified variable xi in ϕ(80)

The knowledge base Kϕ is nondisjunctive. We now prove that ϕ is satisfiable
if and only if Kϕ �|=MKNF ¬K T (uψ ); this implies �

p
2 -hardness of nonentailment

for nonstratified MKNF knowledge bases and, consequently, the claim of this
proposition.

If ϕ is satisfiable, then a valuation ν for the variables xi exists such that ψ is
satisfied for each valuation of the variables yi . Let Mν be a set of first-order inter-
pretations I satisfying the axioms from Oϕ such that I |= T (uxi ) if ν(xi ) = true and
I |= F(uxi ) if ν(xi ) = false. Clearly, Mϕ satisfies all the rules fromKϕ; furthermore,
for each M ′ϕ � Mϕ , the head of either (78) or (79) is false. Hence, Mϕ is an MKNF
model of Kϕ . Since ψ is true for each value of the variables yi , Mϕ |= K T (uψ ) by
Lemma 6.8. Hence, Mϕ �|= ¬K T (uψ ), so Kϕ �|=MKNF ¬K T (uψ ).

Conversely, if Kϕ �|=MKNF ¬K T (uψ ) holds, then an MKNF model M of Kϕ

exists such that M �|= ¬K T (uψ )—that is, M |= K T (uψ ). Due to rules (78)–(79),
either M |= K T (uxi ) or M |= K F(uxi ) for each variable xi . Since M is the
maximal set of first-order interpretations that satisfies Kϕ , for each valuation of
the universally quantified variables yi , a first-order interpretation I ∈ M exists
that corresponds to the valuation of yi . Hence, ψ is true for each valuation of yi
by Lemma 6.8, so ϕ is satisfiable.

PROPOSITION 6.15 (4). For CDL,B,H in coNP and P a positive program, decid-
ing K |=MKNF K A is coNP-complete, and deciding K |=MKNF ¬K A is 

p
2 -complete

in data complexity.

PROOF (K |=MKNF K A). By Theorem 4.12, we compute not-entails+ (KG, K A)
and complement the result. A subset P ⊆ KA(KG) can be guessed in nondetermin-
istic polynomial time. Condition (1) holds iff OBO,Ph �|= false; Condition (3) holds
iff OBO,Ph �|= ξ for polynomially many ξ ; and Condition (6) holds iff OBO,Ph �|= A.
All of these checks can be implemented using Proposition 6.4: we guess an equiva-
lence ∼ on the constants, we separate the atoms from Ph into DL-K-atoms P ′h and
non-DL-K-atoms P ′′h , and we then check whether OBO∼,P ′h∼ is satisfiable, whether
{K A, K¬A} �⊆ P ′′h ∼ for each ground first-order non-DL-atom A, and whether
OBO∼,P ′h∼ �|= ξ∼ or K ξ∼ �∈ P ′′h ∼. Since CDL,B,H = coNP, this requires nondeter-
ministic polynomial time. Condition (4) can clearly be verified in polynomial time,
so the algorithm runs in NP. Hardness is inherited from DL.
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(K |=MKNF ¬K A) Membership follows from the case of general programs and is
proved in Proposition 6.16. Hardness follows from hardness of answering queries
in positive datalog programs under stable model semantics [Eiter et al. 1997a].

PROPOSITION 6.16 (5). For CDL,B,H in coNP and P a general program, de-
ciding K |=MKNF (¬) K A is 

p
2 -complete in data complexity.

PROOF. By Theorem 4.10, we compute not-entails(KG, ψ) with ψ = (¬) K A
and complement the result. A subset P ⊆ KA(KG) can be guessed in nondeter-
ministic polynomial time. Conditions (1) and (3) can be checked as discussed in
Proposition 6.15, and require additional polynomial guessing. Condition (4) can
be checked in polynomial time. The complement of Conditions (2) and (5) can be
checked using an oracle. The oracle first checks OBO,Ph �|= ξ for each K ξ ∈ P \ Ph
by using Proposition 6.4. If all checks are positive, the oracle guesses P ′ � P , and
then checks conditions (5a) and (5b). Finally, if the query is of the form K A,
then Condition (6) holds if OBO,Ph �|= A, which can be decided in the same way as
Condition (3); in contrast, if the query is of the form¬K A, then Condition (6) holds
if OBO,Ph |= A, which can be decided in the same way as Condition (2). Hence,
the oracle runs in NP. Hence, our algorithm runs in 

p
2 . Hardness is inherited from

disjunctive datalog under stable model semantics [Eiter et al. 1997a].

7. Comparison with Related Formalisms

In this section, we show that MKNF knowledge bases provide a very general
framework that can capture many existing combinations of DLs and rules.

7.1. EXTENSIONS OF DLS WITH FIRST-ORDER RULES. Investigation of first-
order combinations of a DL knowledge base O with a set of first-order rules P
has a long history. To the best of our knowledge, AL-log [Donini et al. 1998]
was the first such hybrid system, and systems such as CARIN [Levy and Rousset
1998] and SWRL [Horrocks et al. 2005b] followed. The resulting formalisms
are quite expressive, which comes at a price: if O is allowed to contain existential
quantifiers andP is allowed to contain recursive rules, the formalism is undecidable.
Decidability can be ensured by either making the rules in P nonrecursive, or by
restricting the rules in P to be role-safe: at least one of the arguments of each role
atom (i.e., an atom with a binary DL-predicate) in a rule must also occur in a non-
DL-atom in the body of the rule. This restriction makes the rules applicable only
to the explicitly named individuals and their immediate successors. Motik et al.
[2005] proposed a somewhat simpler concept of DL-safety, which generalizes a
similar notion used in AL-log: each variable in a rule must occur in a body non-
DL-atom. Similarly as in Section 6.1, this makes the rules applicable only to the
individuals that are known in O by name. Recently, Krötzsch et al. [2008b] have
proposed an approach in which the rules are syntactically restricted such that they
can be transformed to equivalent DL axioms.

All first-order combinations of DLs and rules can be captured straightforwardly
using MKNF+ knowledge bases. Furthermore, as we discussed in Section 3.3, each
MKNF+ knowledge base can be reduced to an MKNF knowledge base if we extend
the generalized atom base. In fact, from a conceptual point of view, first-order rules
are best thought as part of the first-order fragment DL; the main idea of MKNF
knowledge bases is to enable nonmonotonic reasoning over first-order logic.

Journal of the ACM, Vol. 57, No. 5, Article 30, Publication date: June 2010.



30:50 B. MOTIK AND R. ROSATI

7.2. DL+LOG. Rosati [2005] proposed r-hybrid knowledge bases as one of
the first formalisms that integrates open-world DLs with nonmonotonic rules, and
de Bruijn et al. [2007b] have shown that r-hybrid knowledge bases can be embedded
into quantified equilibrium logic (QEL) [Pearce and Valverde 2005]. Rosati [2006]
has later generalized r-hybrid KBs to DL+log.

ADL+log knowledge baseK = (O,P) consists of a DL knowledge baseO and
disjunctive rules P of the form (6) in which all literals are positive. The signature
� is separated into DL- and non-DL-predicates, and DL-atoms cannot occur under
not in the rules. The nonmonotonic semantics of DL+log employs the standard
name assumption, and is defined with respect to some fixed countably infinite
universe�. Let PG = gr(P,�). Furthermore, for a first-order interpretation I over
�, let IDL and IDL be the projection of I to the DL- and the non-DL-predicates,
respectively. Finally, let (PG, I ) be the program obtained by replacing in PG
each ground DL-atom A with true if I |= A and with false if I �|= A. Then, I is
a model of K if (i) IDL |= O in the standard first-order sense, and (ii) IDL is an
answer set of (PG, I ). To achieve decidability,DL+log employs a notion of weak
DL-safety: each variable in a head DL-atom must occur in a body non-DL-atom.
Under this restriction, variables in the bodies of a rule can be matched to unnamed
individuals; however, the rules can derive facts only about the explicitly named
individuals.

We next show that each DL+log knowledge base can be encoded as an equiva-
lent MKNF+ knowledge base.

Definition 7.1. For a DL+log knowledge base K = (O,P), the MKNF+
encoding of K is the knowledge base μ(K) = (O, μ(P)) where each r ∈ P is
transformed into a rule μ(r ) ∈ μ(P) by transforming the literals according to the
following table.

not A � not A
A � A if A is a DL-atom
A � K A if A is a non-DL-atom

THEOREM 7.2. A DL+log knowledge base K = (O,P) is satisfiable if and
only if its MKNF+ encoding μ(K) = (O, μ(P)) is MKNF satisfiable.

PROOF. Let PG = gr(P,�) and μ(PG) = gr(μ(P),�). By the definition of the
semantics of DL+log and MKNF+ knowledge bases, it suffices to show that the
knowledge base KG = (O,PG) is satisfiable if and only if μ(K) = (O, μ(PG)) is
MKNF satisfiable. For a ground rule r ∈ PG , let rDL be the rule obtained from r
by deleting all non-DL-atoms.

(⇒) Assume that K is satisfiable in some model I . Let M be the maximal MKNF
interpretation such that (i) for each r ∈ PG , if I |= rDL , then J |= rDL for each
J ∈ M , (ii) for each r ∈ PG , if I �|= rDL , then J �|= rDL for at least one J ∈ M ,
(iii) for each non-DL-atom A, if I |= A, then J |= A for each J ∈ M , (iv) for each
non-DL-atom A, if I �|= A, then J �|= A for at least one J ∈ M , and (v) J |= O
for each J ∈ M . It should be clear that M is uniquely defined; furthermore, M is
not empty since it contains I . For each ground non-DL-atom A, we have I |= A
if and only if M |= K A if and only if M �|= not A. Similarly, for each r ∈ PG ,
we have M |= μ(rDL) if and only if I |= rDL . Clearly, M |= μ(r ) for each r ∈ PG .
By the definition of M , we have M |= O, so M |= μ(KG). To show that M is an
MKNF model of μ(K B), assume that an MKNF model M ′ � M exists such that
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(J ′, M ′, M) |= μ(KG) for some J ′ ∈ M ′. Let J be an interpretation that coincides
with J ′ on the DL-atoms but, for each non-DL-atom A, we have J |= A if and only
if M ′ |= K A. Since M ′ � M , we have J � I . Clearly, J |= O and J |= (PG, I )I ,
which contradicts the assumption that I is an answer set of (PG, I )I .

(⇐) Assume that μ(KG) has an MKNF model M . Let I ′ be any interpretation
from M (note that M is not empty), and let I be an interpretation that coincides
with I ′ on the DL-atoms but, for each non-DL-atom A, we have I |= A if and only
if M |= K A. Since (I, M, M) |= μ(r ), we have I |= r for each r ∈ PG and, by the
definition of M , we have I |= O. Assume now that some J � I exists such that
J |= (PG, I )I . Exactly as it was done for M and I in the (⇒) direction, we can
construct an MKNF interpretation M ′ from J and show that (J, M ′, M) |= μ(KG).
Since J � I , we have M ′ � M , which contradicts the assumption that M is an
MKNF model of μ(KG).

In DL+log, the DL-predicates are interpreted always under open-world as-
sumption, whereas non-DL-predicates are interpreted always under closed-world
semantics. Thus, DL+log knowledge bases are inflexible (in the sense from the
introduction), and they cannot be used to provide semantics for constructs such as
integrity constraints or default reasoning, which require nonmonotonic reasoning
over DL-predicates. In MKNF+ knowledge bases, however, one can freely choose
an open- or closed-world interpretation of a predicate by using the predicate in
either a nonmodal or a modal atom. Thus, unlike DL+log, MKNF+ knowledge
bases allow for nonmonotonic closed-world reasoning over DL-predicates.

Furthermore, DL-safety and the reasoning procedure from Table IV general-
ize weak DL-safety and the reasoning algorithm by Rosati [2006]. The MKNF+
knowledge base μ(K) can be transformed into an MKNF knowledge base K′
as shown in Proposition 3.6; the resulting knowledge base then contains the
atoms K ξ in the rule heads where ξ is of the form (81) and it contains only
DL-atoms.

A1 ∨ . . . ∨ An ⊂ ∃y : B1 ∧ · · · ∧ Bm(81)

If K is weakly DL-safe, K′ is DL-safe, and grounding K′ replaces all free variables
in Ai by constants. The first-order problems in the algorithm shown in Table IV
then involve implications of the form (81) where Ai are ground, which can be
solved by answering unions of conjunctive queries over O.

7.3. DISJUNCTIVE DL-PROGRAMS BY LUKASIEWICZ. Lukasiewicz [2007] pro-
posed disjunctive dl-programs as a simple hybrid formalism that integrates DLs
and nonmonotonic rules. A disjunctive dl-program K = (O,P) consists of a DL
knowledge base O and a set of disjunctive rules P of the form (6) in which no
literal contains classical negation—that is, in which all Hi with 1 ≤ i ≤ k and
all B j with 1 ≤ j ≤ n are function-free first-order atoms. The semantics of K is
defined by grounding P with respect to a finite set � of constants that contains at
least all constants occurring in O and P; let KG = (O,PG) where PG = gr(P,�).
An interpretation I is a subset of the Herbrand base HBPG , and I is a model of
O if (O, I ) = O ∪ I ∪ {¬A | A �∈ HBPG \ I } is satisfiable. Furthermore, I is a
model of KG if I is a model of O and I |= PG . Finally, I is an answer set of KG if
I is a model of KG and no interpretation I ′ � I exists that is a model of (O,P I

G).
Without loss of generality, one can assume that� = OK; that is, the semantics can
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equivalently be considered with respect to the set of constants explicitly occurring
in K.

The semantics of disjunctive dl-programs is faithful with respect to the standard
stable model semantics of disjunctive datalog programs with negation as failure
[Gelfond and Lifschitz 1988]: for each ground atom A, a disjunctive dl-program
(∅,P) entails A if and only if P entails A under the stable model semantics. The
entailment relation is, however, undefined for classically negated ground atoms.
The obvious extension would be to say that (O,P) |= ¬A if and only if A �∈ I for
each answer set I of (O,P). But then (∅,∅) |= ¬A for each ground atom A, so
entailment is not faithful with respect to the standard first-order semantics of DLs.
For similar reasons, it is unclear how to extend disjunctive dl-programs to ASP
rules. Thus, disjunctive dl-programs use a much weaker notion of faithfulness than
MKNF knowledge bases, and they seem to be capable of reasoning only about
positive atoms.

We next show that each disjunctive dl-program can be encoded as an equivalent
MKNF knowledge base.

Definition 7.3. Let K = (O,P) be a disjunctive dl-program and � the set of
predicates occurring in K. Furthermore, let O be a fresh unary predicate and w a
fresh proposition, and, for each n-ary predicate R ∈ �, let R1+, R1−, R2+, and R2−
be fresh n-ary predicates uniquely associated with R. Finally, let a1, . . . , a� be all
constants occurring in K. The MKNF encoding of K is an MKNF knowledge base
K′ = (∅,P ′) where the program P ′ contains (i) a rule of the form (82) for each ai ,
1 ≤ i ≤ �, (ii) rule (83), (iii) rules of the forms (84)–(90) for each n-ary predicate
R ∈ �, (iv) rules (91)–(94), and (v) two rules of the form (95)–(96) for each rule
r ∈ P of the form (6), where Hi+ is the atom obtained from H by replacing the
predicate R of H by Ri+ and similarly for Bi+

j and Bi−
j .

K O(ai )←(82)
K ψO ←(83)

K R1+(x) ∨K R1−(x)← K O(x1), . . . , K O(xn)(84)

false← K R1+(x), K R1−(x)(85)

K R2+(x) ∨K R2−(x)← K O(x1), . . . , K O(xn)(86)

K w ← K R2+(x), K R2−(x)(87)

K R2+(x)← K w, K O(x1), . . . , K O(xn)(88)

K R2−(x)← K w, K O(x1), . . . , K O(xn)(89)

K R2−(x)← K R1−(x)(90)
K w ← K ψ1⊃2(91)
false← K �(O, 1)(92)
K w ← K �(O, 2)(93)
K w ← not w(94)

K H 1+
1 ∨ . . . ∨K H 1+

k ← K B1+
1 , . . . , K B1+

m , K B1−
m+1, . . . , K B1−

n(95)

K w ∨K H 2+
1 ∨ . . . ∨K H 2+

k ← K B2+
1 , . . . , K B2+

m , K B1−
m+1, . . . , K B1−

n(96)
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The first-order formulae ψO , ψ1⊃2, �(O, 1), and �(O, 2) are defined as follows.

ψO = ∀x : [O(x) ⊃ x ≈ a1 ∨ . . . ∨ x ≈ a�](97)

ψ1⊃2 =
∧
R∈�
∀x :

[
R1+(x) ∧

∧
x∈x

O(x) ⊃ R2+(x)

](98)

�(O, i) = ¬
[
π (O) ∧

∧
R∈�
∀x : Ri+(x) ⊃ R(x) ∧

∧
R∈�
∀x : Ri−(x) ⊃ ¬R(x)

](99)

THEOREM 7.4. A disjunctive dl-program K = (O,P) has an answer set if and
only if its MKNF encoding K′ = (O,P ′) is MKNF satisfiable.

PROOF. Predicates R1+, R1−, R2+, and R2− can be considered as non-DL-
predicates. Furthermore, while predicate O does not strictly satisfy the definition
of non-DL-predicates due to (83), this fact merely “closes” the extension of O to
all named constants; hence, O behaves as a non-DL-predicate. Thus, K′ has the
same semantic properties as if it were DL-safe. Let K′G is the grounding of K′ with
respect to OK′ ; then K′ and K′G have the same MKNF models. To show the claim,
it suffices to show that the grounding KG of K has an answer set iff K′G is MKNF
satisfiable. By Theorem 4.10, K′G is MKNF satisfiable iff not-entails(K′G, K false)
returns true.

(⇐) Let (P, N ) be a partition of KA(K′G) and Ph = P ∩ HA(K′G) such that Con-
ditions (1)–(6) in Table IV are satisfied. Since (82)–(96) are satisfied in (P, N ), we
have K w ∈ P , K O(ai ) ∈ P for each 1 ≤ i ≤ �, K ψO ∈ P , either K R1+(a) ∈ P
or K R1−(a) ∈ P but not both for each R ∈ � and each tuple of constants a, and
both K R2+(a) ∈ P and K R2−(a) ∈ P for each R ∈ � and each tuple of constants
a. The formula OB∅,Ph thus contains both R2+(a) and R2−(a) for each R ∈ �, so
OB∅,Ph |= ψ1⊃2 and OB∅,Ph ∧ ¬�(O, 2) is unsatisfiable; hence, K ψ1⊃2 ∈ P and
K �(O, 2) ∈ P . Finally, by (92), K �(O, 1) ∈ N . We now show that the interpre-
tation I = {R(a) | K R1+(a) ∈ Ph} is an answer set of KG . Since (P, N ) satisfies
each rule of the form (95), we have I |= PG . Furthermore, K �(O, 1) ∈ N implies
OB∅,Ph ∧ ¬�(O, 1) is satisfiable, so (O, I ) is satisfiable as well. Thus, I is a
model of KG .

Assume now that I is not an answer set ofKG because a model I ′ � I of (O,P I
G)

exists. Let P ′ be a subset of KA(K′G) such that K R1+(a) ∈ P ′ iff K R1+(a) ∈ P
and K R1−(a) ∈ P ′ iff K R1−(a) ∈ P , K R2+(a) ∈ P ′ iff R(a) ∈ I ′, K R2−(a) ∈ P ′
iff R(a) �∈ I ′, K O(ai ) ∈ P for each 1 ≤ i ≤ �, and K ψO ∈ P; furthermore, let
P ′h = P ′ ∩ HA(K′G) and N ′ = KA(K′G) \ P ′. Clearly, (P, N ) satisfies rules (82)–
(95); furthermore, I ′ |= P I

G , so (P, N ) satisfies (96); thus, Condition (5b) in
Table IV is not satisfied. Furthermore, I ′ � I implies OB∅,P ′h �|= ψ1⊃2; since
(O, I ′) is satisfiable, OB∅,P ′h ∧ ¬�(O, 2) is satisfiable as well; finally,
OB∅,P ′h �|= R2+(a) for all K R2+(a) ∈ N ′ \ N and OB∅,P ′h �|= R2−(a) for all
K R2−(a) ∈ N ′ \ N . Thus, Condition (5a) in Table IV is not satisfied, which con-
tradicts our assumption that (P, N ) satisfies Conditions (1)–(6) in Table IV.

(⇒) Let I be an answer set of KG . Furthermore, let P be a subset of
KA(K′G) such that K R1+(a) ∈ P iff R(a) ∈ I , K R1−(a) ∈ P iff R(a) �∈ I ,
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K R2+(a) ∈ P and K R2−(a) ∈ P for each R ∈ � and each tuple of constants
a, K O(ai ) ∈ P for each 1 ≤ i ≤ �, K ψO ∈ P , K w ∈ P , and K �(O, 2) ∈ P;
finally, let Ph = P ∩ HA(K′G) and N = KA(K′G) \ P . We now show that (P, N ) sat-
isfies Conditions (1)–(6) in Table IV. The set Ph contains only K-atoms of the form
K w , K O(ai ), K ψO , and K S(a) where S is of the form R1+, R1−, R2+, and R2+,
so Condition 1 in Table IV is clearly satisfied. The formula OB∅,Ph contains both
R2+(a) and R2−(a) for each R ∈ �, so OB∅,Ph |= ψ1⊃2 and OB∅,Ph ∧ ¬�(O, 2) is
unsatisfiable; thus, Condition 2 in Table IV is satisfied. For K ξ ∈ N of the form
R1+(a) or R1−(a), clearly OB∅,Ph �|= ξ ; furthermore, since (O, I ) is satisfiable,
OB∅,Ph ∧ ¬�(O, 1) is satisfiable as well; thus, Condition 3 in Table IV is satisfied.
Rules (82)–(94) are clearly satisfied in (P, N ). Furthermore, since I |= PG , all
rules of the form (95) are satisfied in (P, N ). Finally, since K w ∈ P , all rules of
the form (96) are satisfied in (P, N ) as well. Thus, Condition (4) in Table IV is
satisfied.

Assume that Condition (5) in Table IV is not satisfied for some (P ′, N ′). By
(84)–(85), K R1+(a) ∈ P ′ iff K R1+(a) ∈ P and K R1−(a) ∈ P ′ iff K R1−(a) ∈ P .
Furthermore, if K w ∈ P ′, by (88)–(89) then K R2+(a) ∈ P ′ and K R2−(a) ∈ P ′
for each R ∈ � and each tuple of constants a; but then K �(O, 2) ∈ P ′, so P ′ = P ,
which is a contradiction, so K w �∈ P ′. Let I ′ = {R(a) | K R2+(a) ∈ P ′h}. Condition
(5b) in Table IV is not satisfied for (P ′, N ′), so all rules of the form (96) are true
in (P ′, N ′); since K w �∈ P ′, we have I ′ |= P I

G . Furthermore, K w �∈ P ′ and rule
(93) is satisfied in (P ′, N ′), so K �(O, 2) ∈ N ′; since Condition (5b) in Table IV
is not satisfied, OB∅,P ′h ∧ ¬�(O, 2) is satisfiable, and so is (O, I ′). Thus, I ′ is
a model of (O,P I

G). Finally, K w �∈ P ′ and rule (91) is satisfied in (P ′, N ′), so
K ψ1⊃2 ∈ N ′; since Condition (5b) in Table IV is not satisfied, OB∅,P ′h �|= ψ1⊃2, so
I ′ � I . But then, I is not an answer set of KG , which is a contradiction.

7.4. DL-PROGRAMS BY EITER ET AL. All rule formalisms discussed thus far are
examples of a tight integration between DLs and rules. Eiter et al. [2008] proposed
a completely different integration strategy known as dl-programs. Despite the
similarity in the name, this formalism is quite different from the one described in
Section 7.3.

The atoms in a dl-program are divided into DL- and non-DL-atoms. A dl-
program K consists of a DL knowledge base O and a set of nondisjunctive rules
P of the form (6) (note that k = 1). Furthermore, each literal in the head must
be a non-DL-atom, and each literal in the body can be either a non-DL-atom or a
dl-query of the form

DL[S1 op1 p1, . . . , S� op� p�; Q](t),(100)

where Si are DL-predicates, pi are non-DL-predicates, opi ∈ {', -∪, -∩}, Q is an
n-ary DL-predicate, and t is a vector of n terms. The semantics of K is defined
for the grounding KG with respect to the set of all constants OK. The Herbrand
base HBPG is defined as the set of all ground literals that can be built using the
non-DL-predicates and the constants from K.11 An interpretation I is a consistent
subset of HBPG . A literal A containing a non-DL-predicate is true in I if and only
if A ∈ I . A ground DL-query of the form (100)—that is, a query where t is a vector

11 Thus, HBPG does not contain dl-query atoms.
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of constants—is satisfied in I if and only if O ∪⋃
1≤i≤� Ai (I ) |= Q(t), where

Ai (I ) =
⎧⎨
⎩
{Si (e) | pi (e) ∈ I } if opi = '
{¬Si (e) | pi (e) ∈ I } if opi = -∪
{¬Si (e) | pi (e) �∈ I } if opi = -∩

.

Eiter et al. [2008] defined strong and weak answer sets of dl-programs. For the sake
of simplicity, we consider here only the strong answer set semantics of dl-programs
and assume that no dl-query in the program contains -∩. The strong dl-transform of
a ground set of dl-rules PG with respect to an interpretation I is the set of dl-rules
sP I

G obtained from PG by deleting every rule containing an atom not A such that
A is true in I , and deleting all atoms of the form not B in the remaining rules. An
interpretation I is a strong answer set of KG if I |= sP I

G and, for each I ′ � I , we
have I ′ �|= sP I

G .
In this style of integration of DLs and ASP, the rules in dl-programs cannot

derive new facts about DL-predicates; they can only pose conditional queries to
the DL knowledge base and then use the results in further computation. Thus, this
style of integration of DLs and rules is not tight.

We now show that it is possible to encode dl-programs not containing -∩ in
dl-queries into MKNF knowledge bases.

Definition 7.5. Let K be a dl-program with a DL knowledge base O and a set
of rules P such that no dl-query in P contains -∩. For a literal A with a non-DL-
predicate, let τ (A) = A; furthermore, for a dl-query A of the form (100), let

τ (A) =
[
π (O) ∧ ∧

1≤i≤�

τ (Si opi pi )

]
⊃ Q(t) where

τ (Si opi pi ) =
{ ∀x : pi (x) ⊃ Si (x) if opi = '
∀x : pi (x) ⊃ ¬Si (x) if opi = -∪

The MKNF encoding of K is the MKNF knowledge base K′ = (∅,P ′), where the
set of rules P ′ is obtained from P be transforming each literal � into K τ (�) and
each literal not A into not τ (A).

THEOREM 7.6. For K and K′ as specified in Definition 7.5, K has a strong
answer set if and only if K′ has an MKNF model.

PROOF. Since K′ is DL-safe, it suffices to prove that the grounding KG of K
has a strong answer set if and only if K′G is MKNF satisfiable, where K′G is the
grounding of K′ with respect to OK′ . By Theorem 4.10, K′G is MKNF satisfiable if
and only if not-entails(KG, K false) returns true.

(⇐) Let (P, N ) be a partition of KA(K′G) and let Ph = P ∩ HA(K′G) such that
Conditions (1)–(6) in Table IV are satisfied. We show that I = {A | K A ∈ Ph} is
a strong answer set of KG . Let A be some literal with a non-DL-predicate. By
Conditions (2) and (3), clearly K A ∈ P if and only if A ∈ I . Furthermore, let A

Journal of the ACM, Vol. 57, No. 5, Article 30, Publication date: June 2010.



30:56 B. MOTIK AND R. ROSATI

be a dl-query of the form (100). Because

Ph |=
[
π (O) ∧ ∧

1≤i≤�

τ (Si opi pi )
] ⊃ Q(t) if and only if

Ph ∧
[
π (O) ∧ ∧

1≤i≤�

τ (Si opi pi )
] |= Q(t)

holds in first-order logic, by Conditions (2) and (3) we have K τ (A) ∈ P if and
only if A is true in I . But then, Condition (4) implies that I |= PG . Assume that
I is not a strong answer set of KG , so an interpretation I ′ � I exists such that
I ′ |= sP I

G . Let P ′ = {K τ (A) ∈ KA(K′G) | A is true in I ′}, N ′ = HA(K′G) \ P ′, and
P ′h = P ′ ∩ HA(K′G). Condition (5a) does not hold for (P ′, N ′), so we have A ∈ I ′

if and only if K τ (A) ∈ P ′. But then, I ′ |= sP I
G implies that Condition (5b) does

not hold, which is a contradiction.
(⇒) Let I be a strong answer set of KG . We show that the conditions in

Table IV are satisfied for P = {K τ (A) ∈ KA(K′G) | A is true in I },
N = KA(K′G) \ P , and Ph = P ∩ HA(K′G). As in the previous paragraph, we
can show that (P, N ) satisfies Conditions (1)–(4). Assume now that Condi-
tions (5a) and (5b) do not hold for some partition (P ′, N ′) of KA(K′G) and
P ′h = P ′ ∩ HA(K′G). Let I ′ = {A | K � ∈ P ′h}. Partition (P ′, N ′) is not necessarily
consistent; it is only weakly consistent: it is possible that K τ (A) ∈ P ′, but A is
false in I ′. All such atoms K τ (A), however, occur in the body of some rule in the
positive program P ′G[P, N ]; hence, if P ′G[P, N ][P ′, N ′] = true, then P ′G[P, N ]
evaluates to true even if we make such K τ (A) false. Hence, I ′ |= sP I

G , which is a
contradiction.

Although we do not have a formal proof, we believe it is possible to extend this
encoding to handle DL-atoms that contain -∩, as well as to weak answer sets.

7.5. A FRAMEWORK BASED ON AUTOEPISTEMIC LOGIC. An approach related
to ours has been pursued by de Bruijn et al. [2007a], who have investigated the
possibilities of using first-order autoepistemic logic (AEL) [Konolige 1991; Moore
1985] as a semantic framework for an integration of first-order logic and logic
programming. They have presented several ways for embedding nonground logic
programs into AEL, and they have extended this embedding to hybrid knowledge
bases consisting of a first-order knowledge base and a logic program. No reasoning
algorithm has been provided.

Rosati [1999] has shown that propositional AEL can be encoded into proposi-
tional MBNF in a simple way, and it is also easy to see that the same encoding
is applicable in MKNF. No such result is known for first-order AEL by Konolige
[1991]; however, we conjecture that a close relationship exists in this case as well.
This could be used to establish a relationship between the hybrid KBs by de Bruijn
et al. [2007a] and MKNF+ knowledge bases and thus obtain a reasoning algorithm.

7.6. EQL-Lite(Q) . Calvanese et al. [2007b] introduced EQL-Lite(Q) as a very
general and powerful query language for description logics. This language is pa-
rameterized with a first-order DL query language Q. An EQL-Lite(Q) query is then
defined as a first-order formula whose atoms are of the form K ξ with ξ ∈ Q. Let
ϕ be an EQL-Lite(Q) query with x the set of free variables. A tuple of constants
a is an answer to ϕ over a DL knowledge base O iff O |= ϕ[a/x]. If ϕ is a do-
main independent formula (Abiteboul et al. [1995] provide a formal definition) and
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answering queries of Q over O is decidable, then answering EQL-Lite(Q) queries
is decidable as well.

To transform an EQL-Lite(Q) query ϕ with x the set of free variables into a set of
MKNF rules, we start with the formula K Q(x) ⊂ ϕ which we then transform using
the well-known Lloyd-Topor transformation into rules [Lloyd and Topor 1984].
The correctness of this transformation immediately follows from the correctness
of the Lloyd-Topor transformation. The resulting set of rules need not be DL-
safe; however, we can make it DL-safe using the transformation presented after
Definition 6.1. Since ϕ is domain-independent, it is not difficult to see that making
the rules DL-safe does not change the semantics of the rules.

7.7. EXTENSION OF DLS WITH DEFAULT LOGIC. Default logic [Reiter 1980] is
one of the basic nonmonotonic knowledge representation formalisms. A default
theory (D, W ) consists of a set of world formulae W , and a set of default rules
D of the form α : β1, . . . , βn/γ , where α is the premise formula, β1, . . . , βn are
the justification formulae, and γ is the conclusion formula; intuitively, this means
“derive γ from α if assuming β1, . . . , βn does not lead to a contradiction.” Baader
and Hollunder [1995] explored the possibilities of extending DLs with default rules.
They showed that adding open defaults (i.e., default rules with free variables) to DLs
leads to undecidability of the basic reasoning problems. Therefore, they proposed
an alternative semantics in which default rules are applicable only to the known
individuals, for which they presented a decision procedure.

To define the semantics of open defaults, Reiter [1980] employed skolemization
and grounded the default rules with respect to the Herbrand universe. Lifschitz
[1990] proposed an alternative semantics that does not employ skolemization,
but in which defaults are interpreted over a fixed universe. The two versions
of default logic coincide only under certain conditions. Furthermore, Lifschitz
[1991] presented a relationship between defaults and MKNF: every default rule
α : β1, . . . , βn/γ can be encoded using the following MKNF formula.

K α ∧ not¬β1 ∧ · · · ∧ not¬βn ⊃ K γ(101)

This equivalence holds only for the version of the default logic by Lifschitz [1990],
and not by Reiter [1980].

Using the encoding (101), MKNF knowledge bases can be used to extend DL
knowledge bases. In fact, the DL-safety restriction makes such defaults applicable
only to the known individuals. Under such an assumption, the logics by Reiter
[1980] and Lifschitz [1990] coincide [Lifschitz 1990, Propositions 4 and 5], so the
results from this paper provide an alternative characterization and a proof procedure
for the formalism by Baader and Hollunder [1995].

7.8. DLS OF MINIMAL KNOWLEDGE AND NEGATION AS FAILURE. Because
it provides a unifying framework for many different nonmonotonic formalisms,
MKNF naturally lends itself as a basis for incorporating nonmonotonic features
into first-order formalisms. Following this idea, Donini et al. [2002] proposed
ALCKNF—an extension of the basic description logic ALC with nonmonotonic
operators K and A. The first operator is the standard K operator of MKNF, and A
is semantically equivalent to ¬not. These extensions can be put to numerous uses,
such as modeling default rules, expressing integrity constraints, and formalizing
role and concept closure. For example, Grimm and Hitzler [2008] applied such
extensions to the problem of semantic matchmaking of Web resources.
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ALCKNF theories and MKNF KBs have incomparable expressivity: the former
does not provide for arbitrary rules; however, it does allow the application of modal
operators to open formulae. The latter is important as it allows one to perform
nonmonotonic reasoning with unnamed individuals. To achieve decidability, the
authors impose a range of restrictions on the places where modal operators can
occur in axioms. The resulting logic has a relatively complex proof theory. In
contrast, the proof theory for MKNF knowledge bases can be seen as an extension
of the proof theory for answer set programs.

7.9. EXTENSIONS OF DLS WITH CIRCUMSCRIPTION. The formalization of cir-
cumscription in second-order logic [McCarthy 1980] provides a powerful frame-
work for nonmonotonic reasoning in first-order logic. Since DLs are first-order
fragments, the semantics of circumscription can be straightforwardly applied to
description logics. Recently, Bonatti et al. [2009] have studied the computational
complexity of reasoning in DLs with circumscription, and have presented a number
of undecidability results, as well as restrictions that can be used to make reasoning
decidable.

DLs with circumscription and MKNF KBs have incomparable expressivity: the
former does not provide for arbitrary rules, but they allow for intensional reasoning
and can therefore be used, for example, to model exceptions in a DL TBox.

7.10. WELL-FOUNDED SEMANTICS FOR MKNF RULES. Knorr et al. [2008]
have recently proposed an extension of MKNF knowledge bases to the well-
founded semantics [van Gelder et al. 1991]. MKNF is a two-valued logic which
cannot directly capture the well-founded models, which are three-valued. There-
fore, the authors have first extended MKNF to a three-valued logic, which can then
be applied to MKNF knowledge bases in a standard way. Furthermore, the au-
thors have presented an alternating fixpoint algorithm for computing well-founded
MKNF models, as well as the corresponding upper complexity bound.

8. Conclusion

Using the logic MKNF by Lifschitz [1991] as foundation, in this paper we presented
the formalism of MKNF knowledge bases, which seamlessly integrates DLs with
answer set programming. This gives us a powerful hybrid formalism that combines
the best features of both worlds: on the one hand, it provides DL-style modeling
of taxonomic knowledge, and on the other hand, it provides ASP-style constructs,
such as negation as failure. We have shown that MKNF knowledge bases provide us
with the first faithful, tight, and flexible formalism that integrates description logics
and ASP. To ensure decidability, we apply the well-known DL-safety restriction
that makes the rules applicable only to explicitly known individuals, thus trading
some expressivity for decidability.

We presented several reasoning algorithms for different fragments of our logic.
Furthermore, we analyzed the combined complexity of the general formalism
and the data complexities of different fragments. Our results show that, in many
cases, reasoning with MKNF knowledge bases is not harder than reasoning in the
corresponding fragment of logic programming.

There are many challenging problems left for future work, such as to study
reasoning in classes of MKNF KBs in the absence of the DL-safety assumption,
or to develop the optimization of the reasoning algorithms for more specific DLs
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and classes of ASP rules. On the practical side, the main problem is to implement
a system supporting MKNF KBs and apply it in practical applications. As we
discussed in Section 4.1, we believe that the algorithms presented in this article
provide a good starting point for the development of practical systems for reasoning
with MKNF knowledge bases.
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