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Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy
email: rosati@dis.uniroma1.it

Abstract. We define a tableau calculus for the logic of only knowing and knowing
at most ONL, which is an extension of Levesque’s logic of only knowing OL. The
method is based on the possible-world semantics of the logic ONL, and can be
considered as an extension of known tableau calculi for modal logic K45. From the
technical viewpoint, the main features of such an extension are the explicit repre-
sentation of “unreachable” worlds in the tableau, and an additional branch closure
condition implementing the property that each world must be either reachable or
unreachable. The calculus allows for establishing the computational complexity of
reasoning about only knowing and knowing at most. Moreover, we prove that the
method matches the worst-case complexity lower bound of the satisfiability problem
for both ONL and OL. With respect to [22], in which the tableau calculus was
originally presented, in this paper we both provide a formal proof of soundness and
completeness of the calculus, and prove the complexity results for the logic ONL.

1. Introduction

Epistemic logics for commonsense reasoning are generally based on the
idea of providing systems (agents) with the ability of introspecting on
their own knowledge and ignorance [17, 13]. To this aim, an epistemic
closure assumption is generally adopted, which informally states that
the logical theory formalizing the agent is a complete specification of
the agent’s knowledge. As a consequence, any fact that is not entailed
by such a theory, according to a given semantics, is assumed to be not
known by the agent. Roughly speaking, there exist two different ways
to modify a monotonic logical framework in order to embed such a prin-
ciple: either by modifying the semantics of the logic, thus realizing at
the meta-level such a knowledge closure, or by representing the closure
assumption explicitly in the language of the logic, suitably extending
its syntax and semantics. The first approach has been pursued in the
definition of several modal formalizations of nonmonotonic reasoning,
e.g. McDermott and Doyle’s nonmonotonic modal logics [15], Halpern
and Moses’ logic of minimal epistemic states [10] and Lifschitz’s logic
of minimal belief and negation as failure [14]. On the other hand, the
second approach has been followed by Levesque [13] in the definition
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of the logic of only knowing (OL), obtained by adding a second modal
operator O interpreted in terms of “all-I-know”, to modal logic K45.
Informally, such an interpretation of the modality O is obtained by
maximizing the set of successors of each world satisfying O-formulae.

In a nutshell, the logic of only knowing is a monotonic formalism,
in which the modality O allows for an explicit representation of the
epistemic closure assumption at the object level (i.e. in the language of
the logic), whereas in nonmonotonic formalisms the closure assumption
is a meta-level notion. E.g., let ϕ be a modal formula specifying the
knowledge of the agent: in the logic of only knowing, satisfiability of the
formula Oϕ in a world w requires maximization of the possible worlds
connected to w and satisfying ϕ; an analogous kind of maximization is
generally realized by the preference semantics of nonmonotonic modal
logics, by choosing, among the models for ϕ, only the models having a
“maximal” set of possible worlds, where such a notion of maximality
changes according to the different proposals.

While the problem of finding a complete axiomatization for the logic
OL has been extensively analyzed [13, 8, 9], few studies have analyzed
the computational aspects of (and/or reasoning methods for) reasoning
about only knowing. Indeed, the computational complexity of reasoning
about only knowing in the propositional case has been only recently
established [21].

In this paper we present a tableau method for the modal proposi-
tional fragment of Levesque’s logic of only knowing OL. More precisely,
we define a tableau calculus for the logic of only knowing and knowing
at most ONL [13, 9], which extends OL with a third modality N
interpreted in terms of “knowing at most”. Informally, the meaning of
a formula Nϕ in ONL is “I know at most ¬ϕ”, which is realized, in
terms of a Kripke-style semantics, by imposing that Nϕ is satisfied in
a world w if and only if all worlds satisfying ¬ϕ are connected to w.

The method is strictly based on the possible-world semantics of the
logic ONL, and can be considered as an extension of known tableau
calculi for the modal logic K45. From the technical viewpoint, the main
feature of such an extension is the explicit representation of “unreach-
able” worlds in the tableau, which allows for a proper handling of
N -subformulae in the tableau. However, the explicit representation of
unreachable worlds requires an additional branch closure condition in
the calculus, which implements the restriction that each possible world
must be either reachable or unreachable from the initial world. Such a
condition is decided by means of a second-level tableau, which looks for
the existence of a world that can be neither reachable nor unreachable
from the initial world of any model consistent with the branch of the
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main tableau. Hence, if such a world exists (i.e., the second-level tableau
is open), then the branch of the main tableau is closed.

Our tableau calculus allows for establishing the computational com-
plexity of reasoning about only knowing and knowing at most: in par-
ticular, we prove that satisfiability in the modal propositional fragment
of ONL is Σp

2-complete, while validity is Πp
2-complete. We also prove

that our method matches the worst-case complexity lower bound of the
satisfiability problem for both ONL and OL, and in this sense it can
be considered “optimal” for these logics.

We remark that, due to its powerful expressive capabilities, the
logic of only knowing is generally considered as a very general for-
malism for nonmonotonic reasoning. In particular, it has been proven
[3] that such a logic is able to naturally embed several well-known
nonmonotonic formalisms, i.e., autoepistemic logic, prerequisite-free
default logic, disjunctive logic programming under stable model se-
mantics, and circumscription. Therefore, our method can be also seen
as a general, semantic-based calculus for nonmonotonic reasoning.

In the following, we first briefly introduce the modal logic of only
knowing and knowing at most ONL. Then, in Section 3 we present the
tableau calculus for ONL, and in Section 4 we prove correctness of the
method. In Section 5 we analyze the computational properties of our
method, and establish the complexity of reasoning in ONL. Finally,
we discuss related work and draw some conclusions in Section 6. With
respect to [22], in which the tableau calculus was originally presented,
in this paper we both provide a formal proof of soundness and com-
pleteness of the calculus, and prove the complexity results for the logic
ONL.

2. The logic ONL

In this section we briefly recall the formalization of only knowing [13].
We assume that the reader is familiar with the basic notions of modal
logic. We recall that K45 denotes the modal logic interpreted on Kripke
structures whose accessibility relation among worlds is transitive and
Euclidean (see e.g. [11] for more details).

We use L to denote a fixed propositional language with propositional
connectives ∧,¬ (the symbols ∨,⊃,≡ are used as abbreviations), and
whose generic atoms are elements of a countably infinite alphabet A of
propositional symbols. We assume that A contains the symbols true,
false. An interpretation (also called world) over L is a function that
assigns a truth value to every atom of L. For each interpretation w,
w(true) = TRUE and w(false) = FALSE. The interpretation of a propo-

rosati.tex; 12/11/2000; 19:27; p.3



4 Riccardo Rosati

sitional formula in an interpretation is defined in the usual way. We say
that a formula ϕ ∈ L is satisfiable if there exists an interpretation w
such that w(ϕ) = TRUE (which we also denote as w |= ϕ).

We use LO to denote the modal extension of L with the modalities
K, N and O. We also use LK to denote the modal extension of L with
the only modality K, and LN to denote the modal extension of L with
the only modality N . We call O-formula a formula from LO of the form
Oϕ. Notice that, with respect to [13], we slightly change the language,
using the modality K instead of B.

In the following, we call modal atom a sentence of the form Kψ, Nψ
or Oψ, with ψ ∈ LO. Given ϕ ∈ LO, we call modal atoms of ϕ (and
denote as MA(ϕ)) the set of modal atoms occurring in ϕ.

The semantics of a formula ϕ ∈ LO is defined in terms of satisfiability
in a structure (w, M) where w is an interpretation (called initial world)
and M is a set of interpretations.

Definition 1. Let w be an interpretation on L, and let M be a set
of such interpretations. We say that a formula ϕ ∈ LO is satisfied in
(w, M), and write (w,M) |= ϕ, iff the following conditions hold:

1. if ϕ ∈ A, then (w, M) |= ϕ iff w(ϕ) = TRUE;
2. (w,M) |= ¬ϕ iff (w,M) 6|= ϕ;
3. (w,M) |= ϕ1 ∧ ϕ2 iff (w, M) |= ϕ1 and (w, M) |= ϕ2;
4. (w,M) |= Kϕ iff for every w′ ∈ M , (w′,M) |= ϕ;
5. (w,M) |= Nϕ iff for every w′ 6∈ M , (w′,M) |= ϕ;
6. (w,M) |= Oϕ iff for every w′, w′ ∈ M iff (w′,M) |= ϕ.

From the above definition, it follows that the modality O can be
expressed by means of the modality K and N : precisely, for each ϕ ∈ LO

and for each (w, M), (w,M) |= Oϕ if and only if (w, M) |= Kϕ∧N¬ϕ.
The above semantics is not actually the one originally proposed

in [13]: in addition to the above rules, a pair (w, M) must satisfy a
maximality condition for the set M , as described below (see [22] for a
discussion of this issue).

In the following, Th(M) denotes the set of formulae Kϕ such that
ϕ ∈ LK and, for each w ∈ M , (w, M) |= Kϕ. Given two sets of inter-
pretations M1,M2, we say that M1 is equivalent to M2 iff Th(M1) =
Th(M2). A set of interpretations M is maximal iff, for each set of
interpretations M ′, if M ′ is equivalent to M then M ′ ⊆ M . A formula
ϕ ∈ LO is ONL-satisfiable iff there exists a pair (w, M) such that
(w, M) |= ϕ and M is maximal.

We say that a formula ϕ ∈ LO is ONL-valid iff ¬ϕ is not ONL-
satisfiable. Entailment in ONL is defined based on the notion of ONL-
satisfiability as follows: a formula ϕ ∈ LO entails a formula ψ ∈ LO in
ONL iff ϕ ⊃ ψ is ONL-valid.
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Notice that the above semantics strictly relates the logic ONL with
modal logic K45, since there is a precise correspondence between the
pairs (w,M) used in the above definition and K45 models. We recall
that, with respect to the satisfiability problem, a K45 model can be
considered without loss of generality as a pair (w, M), where w is a
world, M is a set of worlds (possibly empty), w is connected to all the
worlds in M , the worlds in M are connected with each other (i.e. M
is a cluster), and no world in M is connected to w [15]. Thus, in the
following we will refer to a pair (w,M) as a K45 model. Notice also that,
if ϕ ∈ LK , then ϕ is ONL-satisfiable if and only if it is K45-satisfiable,
which is shown by the fact that, if a K45 model (w, M) satisfies such a
ϕ, then there exists a maximal set M ′ equivalent to M , hence (w, M ′)
satisfies ϕ. The same property holds for ϕ ∈ LN : precisely, it can be
immediately proven that ϕ is ONL-satisfiable if and only if ϕ[N/K]
is K45-satisfiable, where ϕ[N/K] is the formula obtained from ϕ by
replacing each modality N with K.

The logic of only knowing OL [13] simply corresponds to the frag-
ment of ONL obtained by restricting the language to the subset of LO

not containing the modality N , i.e., built upon the modalities K and
O. As a combination of the modalities K and N , the interpretation
of the O modality is obtained through the maximization of the set
of successors of each world satisfying an O-formula. For instance, let
ϕ ∈ L. Then, (w, M) is a model for Oϕ iff M = {w : w |= ϕ}. Hence,
prefixing ϕ with the modality O corresponds to maximizing the set of
worlds in M , which contains all interpretations consistent with ϕ.

3. The tableau calculus

In this section we define a tableau calculus for ONL. In a nutshell, the
calculus is based on tableau expansion rules which include the standard
rules of a tableau for the logic K45 [5, 6, 16] for handling propositional
connectives and the modalities K and N : in particular, K-formulae
and N -formulae in each tableau branch are handled by two separate
clusters: the first cluster represents the worlds that must be connected
to the initial world, i.e., the set of reachable worlds, while the second
one represents the set of unreachable worlds, i.e., the worlds that must
be disconnected from the initial world. In addition, a restricted cut rule
enforces the presence of each modal subformula of the initial formula
in each branch. Finally, a special branch closure condition enforces
the restriction that each possible world must be either reachable or
unreachable, i.e., must belong either to the first or to the second cluster:
such a condition is decided by means of an auxiliary tableau.
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and-rule: if σ : ψ1 ∧ ψ2 ∈ B, and either σ : ψ1 6∈ B or σ : ψ2 6∈ B,
then add σ : ψ1 and σ : ψ2 to B;

or-rule: if σ : ψ1 ∨ ψ2 ∈ B, and neither σ : ψ1 ∈ B nor σ : ψ2 ∈ B,
then add either σ : ψ1 or σ : ψ2 to B;

not-and-rule: if σ : ¬(ψ1 ∧ ψ2) ∈ B, and neither σ : ¬ψ1 ∈ B nor
σ : ¬ψ2 ∈ B, then add either σ : ¬ψ1 or σ : ¬ψ2 to B;

not-or-rule: if σ : ¬(ψ1 ∨ ψ2) ∈ B, and either σ : ¬ψ1 6∈ B or σ :
¬ψ2 6∈ B, then add σ : ¬ψ1 and σ : ¬ψ2 to B;

not-not-rule: if σ : ¬(¬ψ) ∈ B and σ : ψ 6∈ B, then add σ : ψ to B.

Figure 1. Propositional tableau expansion rules.

The tableau expansion rules are reported in Figure 1 and Figure 2.
The tableau calculus deals with prefixed formulae of the form σ : ψ,
where σ is a prefix, i.e. either the number 0 or a pair of the form (1, n)
or (2, n), where n is an integer greater than 0. Given a formula ϕ ∈ LO,
a branch of the tableau for ϕ is a set of prefixed formulae containing the
prefixed formula 0 : ϕ and obtained by applying the expansion rules
reported in Figure 1 and Figure 2.

Let us now briefly describe the tableau rules. First, the rules reported
in Figure 1 are analogous to the usual rules for handling propositional
connectives in tableau methods. As for the rules reported in Figure 2 for
handling modalities, the K-rule and ¬K-rule are standard expansion
rules for the K45 modality [5]: in particular, the ¬K-rule adds the
representation of a new world in the branch, by introducing a new
prefix. The N -rule and ¬N -rule are exactly the same as the K-rule and
¬K-rule, but they affect the second cluster (i.e., the prefixes of the form
(2, n)) instead of the first one. The M-rule propagates each formula
prefixed by a modal operator in the initial world, which simplifies the
treatment of such kind of formulae by the other expansion rules.

The O-rule and ¬O-rule simply convert O-formulae in terms of
the modalities K and N , based on the fact that Oψ is equivalent to
Kψ ∧ N¬ψ; therefore, the presence of a formula Oψ in the branch
causes the addition of the formulae Kψ, N¬ψ in the branch, while
a formula ¬Oψ causes the addition of either ¬Kψ or ¬N¬ψ in the
branch. We remark that the presence of the O-rule and the ¬O-rule
in our calculus is due to complexity reasons. Indeed, we could just
pre-process the input formula, replacing each O-subformula by its defi-
nition in terms of K and N : however, the formula thus obtained has in
general size exponential in the size of the initial formula, which leads
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cut-rule: if ψ ∈ MA(ϕ) and neither 0 : ψ ∈ B nor 0 : ¬ψ ∈ B, then
add either 0 : ψ or 0 : ¬ψ to B;

M-rule: if σ : Mψ ∈ B, where M ∈ {K,¬K, N,¬N, O,¬O}, and
0 : Mψ 6∈ B, then add 0 : Mψ to B;

K-rule: if 0 : Kψ ∈ B, and there exists a prefix (1, n) in B such that
(1, n) : ψ 6∈ B, then add (1, n) : ψ to B;

N-rule: if 0 : Nψ ∈ B, and there exists a prefix (2, n) in B such that
(2, n) : ψ 6∈ B, then add (2, n) : ψ to B;

¬K-rule: if 0 : ¬Kψ ∈ B, and there is no prefix of the form (1, n) in
B such that (1, n) : ¬ψ ∈ B, then add (1,m) : ¬ψ to B, where
(1,m) is a new prefix in B;

¬N-rule: if 0 : ¬Nψ ∈ B, and there is no prefix of the form (2, n) in
B such that (2, n) : ¬ψ ∈ B, then add (2,m) : ¬ψ to B, where
(2,m) is a new prefix in B;

O-rule: if 0 : Oψ ∈ B, and either 0 : Kψ 6∈ B or 0 : N¬ψ 6∈ B, then
add 0 : Kψ and 0 : N¬ψ to B;

¬O-rule: if 0 : ¬Oψ ∈ B, and neither 0 : ¬Kψ ∈ B nor 0 : ¬N¬ψ ∈ B,
then add either 0 : ¬Kψ or 0 : ¬N¬ψ to B.

Figure 2. Modal tableau expansion rules.

to tableau branches of exponential length. Conversely, by using the O-
rule and ¬O-rule for processing O-subformulae, the generation of such
exponential branches is avoided.

Finally, the cut-rule implements a restricted form of cut. Specifically,
it enforces the presence in B of each modal subformula occurring in
ϕ or its negation. As we shall see, such a rule is required in order to
easily verify (through an auxiliary tableau) whether the set of reachable
and unreachable worlds from the initial world is the set of all possible
worlds, which corresponds to checking whether each world satisfies the
constraints, contained in B, concerning either the first or the second
cluster.

We now define the notions of closure and completeness of a branch.
We say that a branch B is completed if no expansion rule is applicable to
B. As for the notion of closure of a branch, we remark that a completed
branch identifies a part of a model for ψ, in the sense that formulae of
the form 0 : ψ in B are constraints for the initial world (0) of the model,
while a formula of the form (1, n) : ψ is a constraint for a world (n)
which can be reached from the initial world, and a formula of the form
(2,m) : ψ is a constraint for a world (m) which cannot be reached from
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the initial world. Therefore, since the set of reachable and unreachable
worlds from the initial world must be the set of all possible worlds,
we have to verify that such constraints allow any world to be either
reachable or unreachable. As the following example shows, this is not
always the case.

Example 1. Let ϕ = (c∨K(a∨ b))∧ (Na∨K¬b). It is easy to verify
that the following is a completed branch of the tableau for ϕ:

B = {0 : (c ∨K(a ∨ b)) ∧ (Na ∨K¬b), 0 : c ∨K(a ∨ b), 0 :Na ∨K¬b,

0 : K(a ∨ b), 0 : Na, 0 :¬K¬b, (1, 1) : b, (1, 1) : a ∨ b, (1, 1) : a}
Due to the presence of K(a∨b) in B, any model satisfying B is such that
each world which can be reached from the initial world satisfies either
a or b, hence all worlds that satisfy both ¬a and ¬b are not reachable;
on the other hand, the presence of Na implies that each unreachable
world satisfies a. Consequently, each interpretation satisfying both ¬a
and ¬b is neither reachable nor unreachable according to the formulae
in B. 2

In order to verify that a branch B allows any world to be either
reachable or unreachable from the initial world, we define an auxiliary
tableau for B. The auxiliary tableau uses as expansion rules only the
propositional expansion rules reported in Figure 1.

Definition 2. A branch B′ of the auxiliary tableau for B is a collection
of formulae (without prefix) containing:

1. each formula ψ such that 0 : ψ ∈ B and either ψ ∈ MA(ϕ) or
ψ = ¬ψ′ and ψ′ ∈ MA(ϕ);

2. the formula
∨

0:Kψ∈B ¬ψ if there is at least one formula of the form
0 : Kψ in B, false otherwise;

3. the formula
∨

0:Nψ∈B ¬ψ if there is at least one formula of the form
0 : Nψ in B, false otherwise,

and obtained by applying the expansion rules reported in Figure 1.

Notice that any such branch may contain modal formulae, how-
ever they are treated as propositional atoms, i.e., they are not further
analyzed.

A branch B′ of the auxiliary tableau is completed if no propositional
expansion rule is applicable to B′, and is open if and only if (i) there is
no pair of formulae in B′ of the form ψ and ¬ψ; (ii) the formula false
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does not belong to B′. The auxiliary tableau for B is open if it has at
least one open completed branch, otherwise it is closed.

Informally, the auxiliary tableau for a branch B of the initial tableau
tries to identify a world which cannot be neither reachable nor unreach-
able from the initial world of any model consistent with the branch B.
If no such world exists (i.e., the tableau is closed), then the branch B
is open, since it identifies a model for the initial formula ϕ.

Example 2. We now present an auxiliary tableau for the tableau of
the formula ϕ of Example 1. Let us start from the following branch B
(reported in Example 1) of the tableau for ϕ:

B = {0 : K(a∨ b), 0 : Na, 0 : ¬K¬b, (1, 1) : b, (1, 1) : a∨ b, (1, 1) : a}

According to Definition 2, the auxiliary tableau for B starts with the
following formulae: {K(a∨b), Na, ¬K¬b, ¬(a∨b), ¬a}. By applying the
expansion rules of Figure 1, we obtain the following (unique) completed
branch B′:

B′ = {K(a ∨ b), Na, ¬K¬b, ¬(a ∨ b), ¬a, ¬b}

Such a branch is open, and identifies a world (containing both ¬a and
¬b) which is neither reachable nor unreachable from the initial world
of any model consistent with the prefixed formulae in the branch B of
the initial tableau for ϕ. We thus conclude that the branch B is not
consistent with the condition that each world must be either reachable
or unreachable from the initial world. 2

We now state the closure conditions for a branch of the initial
tableau.

Definition 3. A completed branch B for ϕ ∈ LO is open if and only
if each of the following conditions holds:

1. there is no pair of prefixed formulae in B of the form σ : ψ and
σ : ¬ψ;

2. there exists no prefix σ such that the formula σ : false belongs to
B;

3. the auxiliary tableau for B is closed, i.e., no world is neither reach-
able nor unreachable.

The tableau for ϕ is open if it has at least one open completed
branch, otherwise it is closed.
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Example 3. We now apply the above defined tableau method to the
formula ϕ = c ∧ (K(a ∨ b) ∧ (Oa ∨N¬b)). It is immediate to see that
each branch of the tableau for ϕ contains the following set of signed
formulae S, obtained by two applications of the and-rule of Figure 1 to
the initial formula 0 : c ∧ (K(a ∨ b) ∧ (Oa ∨N¬b)):

S = {0 : c∧ (K(a∨ b)∧ (Oa∨N¬b)), 0 : c, 0 : K(a∨ b), 0 : Oa∨N¬b}
By applying the rules reported in Figure 1 and Figure 2, we obtain the
following completed branches of the tableau for ϕ:

B1 = S ∪ {0 :Oa, 0 : Ka, 0 : N¬a, 0 : N¬b}
B2 = S ∪ {0 :Oa, 0 : Ka, 0 : N¬a, 0 :¬N¬b, (2, 1) : b, (2, 1) :¬a}
B3 = S ∪ {0 :N¬b, 0 :¬Oa, 0 :¬Ka, (1, 1) :¬a, (1, 1) : a ∨ b, (1, 1) : a}
B4 = S ∪ {0 :N¬b, 0 :¬Oa, 0 :¬Ka, (1, 1) :¬a, (1, 1) : a ∨ b, (1, 1) : b}
B5 = S ∪ {0 :N¬b, 0 :¬Oa, 0 :¬N¬a, (2, 1) : a, (2, 1) :¬b}
E.g., branch B1 is obtained by applying the or-rule to 0 : Oa∨N¬b and
choosing Oa, then applying the O-rule, thus adding 0 : Ka, 0 : N¬a,
and finally applying the cut-rule to N¬b choosing 0 : N¬b.

It is immediate to see that branch B3 is closed, since both (1, 1) :
¬a and (1, 1) : a belong to B3. For each remaining branch, we have
to construct its auxiliary tableau in order to determine whether such
a branch is open or closed. We obtain the following starting set of
formulae Aux(Bi) for the auxiliary tableau of each branch Bi:

Aux(B1) = {K(a ∨ b), Oa, Ka, N¬a, N¬b, ¬a ∨ ¬(a ∨ b), a ∨ b}
Aux(B2) = {K(a ∨ b), Oa, Ka, N¬a, ¬N¬b, ¬a ∨ ¬(a ∨ b), a}
Aux(B4) = {K(a ∨ b), N¬b, ¬Oa, ¬(a ∨ b), b}
Aux(B5) = {K(a ∨ b), N¬b, ¬Oa, ¬(a ∨ b), b}
We recall that both the formula ¬a∨¬(a∨ b) in Aux(B1) and Aux(B2)
and the formula ¬(a ∨ b) in Aux(B4) and Aux(B5) are obtained from
point 2 of Definition 2, while a ∨ b in Aux(B1), a in Aux(B2), and b
in Aux(B4) and Aux(B5) are obtained from point 3 of Definition 2. By
applying the rules reported in Figure 1 we obtain that:

1. the auxiliary tableau for B1 is open, therefore B1 is closed;

2. the auxiliary tableau for B2 is closed, due to the presence of the
formula a and the fact that each possible expansion of the formula
¬a ∨ ¬(a ∨ b) causes the addition of ¬a. Hence, B2 is open;

3. the auxiliary tableaux for B4 and B5 are closed, due to both the
presence of the formula b and the fact that the expansion of the

rosati.tex; 12/11/2000; 19:27; p.10



Tableau calculus for reasoning about only knowing 11

formula ¬(a ∨ b) causes the addition of the formula ¬b. Therefore,
B4 and B5 are open.

Consequently, the tableau for ϕ is open. 2

4. Soundness and completeness

In this section we prove soundness and completeness of the tableau
calculus defined in the previous section. Specifically, we first provide
an alternative semantics for ONL (yet equivalent to the one given in
Section 2), based on Kripke structures in which unreachable worlds
are explicitly represented; then, we prove completeness of our calculus
with respect to such a semantics, and finally we show soundness of the
method.

We start by relating satisfiability in ONL with the problem of find-
ing Kripke structures constituted by an initial world and two clusters.
Such structures correspond to the “extended situations” defined in [9].

Let w be a world and M, M ′ be sets of worlds. Then, we define
satisfiability of a formula ϕ ∈ LO in the structure (w, M, M ′) as follows:

1. if ϕ ∈ L, then (w,M,M ′) |= ϕ iff w(ϕ) = TRUE;
2. (w,M,M ′) |= ¬ϕ iff (w, M, M ′) 6|= ϕ;
3. (w,M,M ′) |= ϕ1 ∧ ϕ2 iff (w, M,M ′) |= ϕ1 and (w, M, M ′) |= ϕ2;
4. (w,M,M ′) |= Kϕ iff for every w′ ∈ M , (w′,M, M ′) |= ϕ;
5. (w,M,M ′) |= Nϕ iff for every w′ ∈ M ′, (w′,M,M ′) |= ϕ;
6. (w,M,M ′) |= Oϕ iff for every w′ ∈ M , (w′,M, M ′) |= ϕ, and for

every w′ ∈ M ′, (w′,M, M ′) |= ¬ϕ.
From the above definition and Definition 1, it immediately follows

that a formula ϕ ∈ LO is ONL-satisfiable iff there exists a structure
(w, M,M ′) such that:

1. (w,M,M ′) |= ϕ;
2. M ∪M ′ is the set of all possible worlds;
3. M ∩M ′ = ∅.
Notably, it can be proven that the last condition is not necessary,

hence the existence of a structure (w,M, M ′) which satisfies ϕ and such
that M ∪M ′ is the set of all possible worlds is sufficient to establish
ONL-satisfiability of ϕ, as stated by the following property.

Lemma 1. Let ϕ ∈ LO. Then, ϕ is ONL-satisfiable iff there exists a
structure (w, M, M ′) such that (i) (w,M,M ′) |= ϕ and (ii) M ∪M ′ is
the set of all possible worlds.

Proof. The proof is an immediate consequence of [9, Theorem 2.3]. 2
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Roughly speaking, the above property is due to the fact that the
alphabet of propositions A is infinite, which guarantees that a finite
formula cannot identify a world, i.e., no formula is able to impose the
presence of a given world w in one of the two clusters M , M ′.

We now prove completeness of the tableau calculus.
In the following, we call a branch B weakly open if and only if there

is no pair of prefixed formulae in B of the form σ : ψ and σ : ¬ψ, and
there exists no prefix σ such that the formula σ : false belongs to B.
That is, we weaken the notion of open branch by discarding condition 3
in Definition 3.

Definition 4. A structure (w, M, M ′) is consistent with a completed
and weakly open branch B if the following conditions hold:

1. for each formula ψ such that 0 : ψ ∈ B, (w, M, M ′) |= ψ;

2. for each prefix of the form (1, n) in B there exists a world w′ in M
such that, for each formula (1, n) : ψ ∈ B, (w′, M, M ′) |= ψ;

3. for each prefix of the form (2, n) in B there exists a world w′ in M ′
such that, for each formula (2, n) : ψ ∈ B, (w′, M, M ′) |= ψ.

We now prove that the existence of a completed and weakly open
branch in the tableau for ϕ corresponds to the existence of a structure
(w, M,M ′) satisfying ϕ.

Lemma 2. Let ϕ ∈ LO. Then, there exists a completed and weakly
open branch B of the tableau for ϕ iff there exists a structure (w, M, M ′)
such that (w, M,M ′) |= ϕ. Moreover, (w,M,M ′) is consistent with B.

Proof. The proof is obtained by a straightforward extension of the
soundness and completeness proof of the tableau method for the logic
K45 presented in [16]. Indeed, our tableau calculus can be seen as
obtained by extending the one presented in [16] with the N -rule, the
¬N -rule, the O-rule, the ¬O-rule, and the cut-rule. Since the first four
rules extend the method in order to treat the modality N in a way iden-
tical to the modality K, while the cut-rule does not affect correctness
of the method, it is immediate to extend the above mentioned proof to
our calculus. 2

Therefore, the existence of a completed and weakly open branch
implies the existence of a structure (w, M, M ′) satisfying ϕ. However,
this is not enough to imply that ϕ is ONL-satisfiable. From Lemma 1,
we have to verify that the structure is such that M ∪M ′ is the set of
all possible worlds. To this aim, we give some auxiliary definitions.
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Definition 5. Let S be a set of modal atoms. We say that a pair of
sets of worlds (M, M ′) induces the partition (P, N) on S if, for each
modal atom ξ ∈ S, ξ ∈ P iff, for each world w, (w, M, M ′) |= ξ.

In the following, we say that an occurrence of a formula ψ in a
formula ϕ ∈ LO is strict if it is not in the scope of a modal operator.
Moreover, we say that a formula ϕ ∈ LO has modal depth i if each oc-
currence of a formula in ϕ lies within the scope of at most i modalities,
and there is an occurrence of a formula in ϕ which lies within the scope
of exactly i modalities.

Definition 6. Let ϕ ∈ LO and let P, N be sets of modal atoms such
that P ∪ N ⊇ MA(ϕ) and P ∩ N = ∅. We denote with ϕ(P, N)
the propositional formula obtained from ϕ by substituting each strict
occurrence in ϕ of a formula in P with true, and each strict occurrence
in ϕ of a formula in N with false.

Given a branch B and a formula ψ ∈ LO, we denote as (PB, NB) the
partition defined as follows:

PB = {ξ | 0 : ξ ∈ B and ξ is a modal atom}
NB = {ξ | 0 : ¬ξ ∈ B and ξ is a modal atom}

Definition 7. Let ϕ ∈ LO and let B be a completed and weakly
open branch of the tableau for ϕ. We denote as fK(B) and fN (B)
the following formulae:

fK(B) =
∧

0:Kψ∈B
ψ(PB, NB) fN (B) =

∧

0:Nψ∈B
ψ(PB, NB)

It is immediate to verify that, due to the cut-rule, fK(B) and fN (B)
are both propositional formulae.

Example 4. Let ϕ = c ∧ (K(a ∨ b) ∧ (Oa ∨ N¬b)). As shown in
Example 3, a completed and weakly open branch of the tableau for
ϕ is the following:

B2 = {0 : c∧ (K(a∨ b)∧ (Oa∨N¬b)), 0 : c, 0 : K(a∨ b), 0 : Oa∨N¬b,
0 : Oa, 0 :Ka, 0 : N¬a, 0 :¬N¬b, (2, 1) : b, (2, 1) :¬a}

Then, by applying the previous definitions we obtain fK(B2) = (a∨b)∧a
and fN (B2) = ¬a. 2

Lemma 3. Let ϕ ∈ LO, let w be a world, let (M, M ′) be sets of
interpretations, and let (P,N) be the partition induced by M on a set
of modal atoms S. Then, (w,M,M ′) |= ϕ iff (w, M, M ′) |= ϕ(P, N).

rosati.tex; 12/11/2000; 19:27; p.13



14 Riccardo Rosati

Proof. Follows immediately from Definition 6 and Definition 1. 2
We now associate each completed and weakly open branch B with

a particular structure (w,M, M ′) which we call maximal model for B.

Definition 8. Let ϕ ∈ LO and let B be a completed and weakly open
branch of the tableau for ϕ. We call maximal model for B the structure
(w, M,M ′), where: (i) w is the world such that, for each propositional
symbol a, w |= a iff 0 : a ∈ B; (ii) M = {w | w |= fK(B)}; (iii)
M ′ = {w | w |= fN (B)}.

Then, we prove that ϕ holds in the maximal model associated with
a completed and weakly open branch B of the tableau for ϕ. First, we
prove an auxiliary lemma.

Lemma 4. Let ϕ ∈ LO and suppose B is a completed and weakly open
branch of the tableau for ϕ. Let (w, M, M ′) be the maximal model for
B. Then, (PB, NB) is the partition induced by (M,M ′) on MA(ϕ).

Proof. By definition of (PB, NB) and Definition 5, we have to prove that,
for each modal atom ξ ∈ MA(ϕ), (w,M, M ′) |= ξ iff 0 : ξ ∈ B. The
proof is by induction on the modal depth of modal atoms in MA(ϕ).

The base case is for modal atoms of depth 1. Consider a modal
atom of the form Kψ such that ψ ∈ L, and first suppose 0 : Kψ ∈
B. By Definition 7, since the propositional formula fK(B) ⊃ ψ is a
tautology, and since by Definition 8, for each w′ ∈ M , w′ |= fK(B),
it follows that, for each w′ ∈ M , w′ |= ψ, hence (w,M,M ′) |= Kψ.
Now suppose 0 : Kψ 6∈ B: then, since B is completed, by the cut-rule
it follows that 0 : ¬Kψ ∈ B. Since B is weakly open, it follows that the
propositional formula fK(B) ⊃ ψ is not a tautology, hence there exists
a world w′ ∈ M such that w′ 6|= ψ, consequently (w, M, M ′) 6|= Kψ. In
the same way, it can be shown that, if Nψ ∈ MA(ϕ) and ψ ∈ L, then
(w, M,M ′) |= Nψ iff 0 : Nψ ∈ B, which immediately implies that, if
Oψ ∈ MA(ϕ) and ψ ∈ L, then (w, M, M ′) |= Oψ iff 0 : Oψ ∈ B.

For the inductive step, suppose that, for each modal atom ξ ∈
MA(ϕ) of modal depth less or equal to i, ξ ∈ PB iff (w,M,M ′) |= ξ.
Therefore, (PB, NB) agrees with the partition induced by (M, M ′) on
all modal atoms of depth less or equal to i. Consider a modal atom Kψ
of MA(ϕ) of modal depth i + 1. Since by Definition 6 the value of the
sentence ψ(PB, NB) only depends on the value of the modal atoms of
modal depth less or equal to i in (PB, NB), by the induction hypothesis
it follows that (w, M,M ′) |= ψ iff (w,M, M ′) |= ψ(PB, NB). Now, if
0 : Kψ ∈ B, then the propositional formula fK(B) ⊃ ψ(PB, NB) is a
tautology, hence for each w′ ∈ M , w′ |= ψ(PB, NB), which implies that
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(w, M,M ′) |= Kψ. Conversely, if 0 : Kψ 6∈ B, then 0 : ¬Kψ ∈ B,
and since B is weakly open, it follows that the propositional formula
fK(B) ⊃ ψ(PB, NB) is not a tautology, hence there exists a world w′ ∈
M such that w′ 6|= ψ(PB, NB), which implies that (w, M, M ′) |= Kψ.
In the same way, it can be shown that, if Nψ ∈ MA(ϕ) and Nψ has
modal depth i + 1, then (w, M,M ′) |= Nψ iff 0 : Nψ ∈ B, which in
turn implies that, if Oψ ∈ MA(ϕ) and Oψ has modal depth i+1, then
(w, M,M ′) |= Oψ iff 0 : Oψ ∈ B. 2

Lemma 5. Let ϕ ∈ LO and suppose B is a completed and weakly open
branch of the tableau for ϕ. Let (w, M, M ′) be the maximal model for
B. Then, (w, M, M ′) |= ϕ.

Proof. Since by Lemma 4 (PB, NB) is the partition induced by (M,M ′)
on MA(ϕ), it follows from Lemma 3 and the fact that ϕ(PB, NB) is a
propositional formula, that (w,M, M ′) |= ϕ iff w |= ϕ(PB, NB). Now,
since by Definition 8, if 0 : a ∈ B then w |= a, and since B is a
completed and weakly open branch, it follows that w |= ϕ(PB, NB),
which proves the thesis. 2

We now turn our attention to the auxiliary tableau of a completed
and weakly open branch B.

Lemma 6. Let ϕ ∈ LO and let B be a completed and weakly open
branch of the tableau for ϕ. Then, there exists an open branch B′ of the
auxiliary tableau for B iff there exists a world w such that w 6|= fK(B)
and w 6|= fN (B).

Proof. Since modal atoms are treated as atomic symbols in the auxiliary
tableau, the proof follows immediately from the definition of auxil-
iary tableau and from soundness and completeness, with respect to
propositional satisfiability, of the auxiliary tableau calculus. 2

The above lemma allows us to prove the key property that the
maximal model for a completed open branch is a structure of the form
(w, M,M ′) such that M ∪M ′ is the set of all worlds.

Lemma 7. Let ϕ ∈ LO and suppose B is a completed and open branch
of the tableau for ϕ. Let (w, M, M ′) be the maximal model for B. Then,
(w, M,M ′) |= ϕ and M ∪M ′ is the set of all worlds.

Proof. The fact that (w, M, M ′) |= ϕ follows from Lemma 5. Moreover,
from Lemma 6, there is no world w such that w 6|= fK(B) and w 6|=
fN (B). Therefore, from Definition 8 it follows that M ∪M ′ is the set
of all worlds. 2

Therefore, we are able to state completeness of the tableau calculus.
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Theorem 1. Let ϕ ∈ LO. If there exists a completed and open branch
B of the tableau for ϕ, then ϕ is an ONL-satisfiable formula.

Proof. Follows from Lemma 7 and Lemma 1. 2
As for soundness of the tableau calculus, we start by proving the

following property.

Lemma 8. Let ϕ ∈ LO, let B be a completed and weakly open branch
of the tableau for ϕ, and let (w,M, M ′) be a structure consistent with B.
Then, for each w′ ∈ M , w′ |= fK(B), and for each w′ ∈ M ′, w′ |= fN (B).

Proof. We first prove that, for each modal atom ξ such that ξ ∈ MA(ϕ),
(w, M,M ′) |= ξ(PB, NB) iff 0 : ξ ∈ B. The proof is by induction on the
structure of the modal atoms in MA(ϕ). First, consider a modal atom
ξ ∈ MA(ϕ) of modal depth 1, and suppose 0 : ξ ∈ B. Then, since
(w, M,M ′) is consistent with B, (w, M,M ′) |= ξ. Conversely, suppose
0 : ξ 6∈ B. Then, since B is completed, 0 : ¬ξ ∈ B, and since (w, M, M ′)
is consistent with B, (w,M,M ′) |= ¬ξ, consequently (w, M, M ′) 6|= ξ.

Now suppose that, for each modal atom ξ ∈ MA(ϕ) of modal depth
less or equal to i, (w, M, M ′) |= ξ iff 0 : ξ ∈ B. Therefore, (PB, NB)
agrees with the partition induced by (M, M ′) on all modal atoms of
depth less or equal to i. Consider a modal atom ξ of MA(ϕ) of modal
depth i + 1. Since by Definition 6 the value of the sentence ξ(PB, NB)
only depends on the value of the modal atoms of modal depth less
or equal to i in (PB, NB), by the induction hypothesis it follows that
(w, M,M ′) |= ξ iff (w, M, M ′) |= ξ(PB, NB). Now, if 0 : ξ ∈ B, then,
since (w,M,M ′) is consistent with B, (w, M,M ′) |= ξ; conversely, if
0 : ξ 6∈ B, then, since B is completed, 0 : ¬ξ ∈ B, and since (w, M, M ′)
is consistent with B, (w, M, M ′) |= ¬ξ, consequently (w, M, M ′) 6|= ξ.
Then, (w, M, M ′) |= ξ iff 0 : ξ ∈ B, and since (w, M,M ′) |= ξ iff
(w, M,M ′) |= ξ(PB, NB), the thesis follows.

Now, since for each modal atom ξ ∈ MA(ϕ), (w, M,M ′) |= ξ(PB, NB)
iff 0 : ξ ∈ B, it follows that (w, M, M ′) |= Kψ(PB, NB) for each
0 : Kψ ∈ B, hence by Definition 7 it follows that, for each w′ ∈ M ,
w′ |= fK(B). In the same way, since (w,M,M ′) |= Nψ(PB, NB) for each
0 : Nψ ∈ B, Definition 7 implies that, for each w′ ∈ M ′, w′ |= fN (B). 2

We are now ready to prove soundness of our method.

Theorem 2. Let ϕ ∈ LO be an ONL-satisfiable formula. Then, there
exists a completed and open branch B of the tableau for ϕ.

Proof. From Lemma 1, it follows that there exists a structure (w,M,M ′)
such that (w, M, M ′) |= ϕ and M∪M ′ is the set of all worlds. Moreover,
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by Lemma 2, there exists a completed and weakly open branch B of
the tableau for ϕ such that (w,M,M ′) is consistent with B, and by
Lemma 8, for each w′ ∈ M , w′ |= fK(B), and for each w′ ∈ M ′,
w′ |= fN (B). Since M ∪M ′ is the set of all worlds, it follows that there
is no world w′′ such that w′′ 6|= fK(B) and w′′ 6|= fN (B), hence by
Lemma 6 the auxiliary tableau for B is closed, which implies that B is
open. 2

Therefore, from Theorem 1 and Theorem 2 we are able to prove
correctness of our tableau calculus.

Theorem 3. Let ϕ ∈ LO. Then, ϕ is ONL-satisfiable iff there exists
a completed open branch of the tableau for ϕ.

5. Complexity analysis

In this section we analyze the computational aspects of reasoning in
ONL, based on our tableau calculus. We start by briefly introducing
the complexity classes mentioned in the following (refer e.g. to [12] for
further details). All the classes we use reside in the polynomial hierar-
chy. In particular, the complexity class Σp

2 is the class of problems that
are solved in polynomial time by a nondeterministic Turing machine
that uses an NP-oracle (i.e., that solves in constant time any problem in
NP), and Πp

2 is the class of problems that are complement of a problem
in Σp

2. It is generally assumed that the polynomial hierarchy does not
collapse, and that a problem in the class NP is computationally easier
than a Σp

2-hard or Πp
2-hard problem.

We now analyze the complexity of our tableau method.

Theorem 4. The ONL-satisfiability problem is in Σp
2.

Proof. It is immediate to verify that: (i) any (prefixed) formula appear-
ing either in a branch of the initial tableau for ϕ or in a branch of an
auxiliary tableau has size linear in the size of ϕ; (ii) any completed
branch of the initial tableau for ϕ contains a polynomial number (in
the size of ϕ) of prefixed formulae; (iii) any completed branch of the
auxiliary tableau for a branch B contains a number of formulae which is
polynomial in the size of B; (iv) for each tableau expansion rule, both
deciding whether the rule can be applied and applying the rule can
be done in polynomial time. Therefore, each completed branch of the
auxiliary tableau for a branch B can be constructed in time polynomial
in the size of ϕ. Consequently, from Theorem 3 the tableau method is
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able to check whether a completed branch B of the tableau for ϕ is open
in nondeterministic polynomial time. Moreover, each completed branch
of the tableau for ϕ can also be constructed in polynomial time. Thus,
our method can be seen as a nondeterministic procedure which is able
to decide in polynomial time whether there exists an open branch of
the tableau for ϕ, using an NP-oracle for deciding whether a completed
branch is open. 2

Theorem 5. The ONL-satisfiability problem is Σp
2-complete.

Proof. Membership in Σp
2 follows from previous theorem. As for Σp

2-
hardness, it has been proven in [21] that deciding satisfiability of a
formula in OL is a Σp

2-complete problem. Therefore, it immediately
follows that satisfiability of a formula in ONL is Σp

2-hard. 2
Therefore, the above theorem states that adding a “knowing at

most” modality N to the logic of only knowing OL does not increase
the computational complexity of reasoning.

As immediate corollaries of the above property, we obtain that both
validity and entailment in ONL are Πp

2-complete problems (see def-
inition of entailment in ONL given in Section 2). Notice that, since
the satisfiability problem in ONL is Σp

2-hard, a single tableau for such
a logic should have branches of exponential length (unless Σp

2 = NP).
Instead, as shown above, by using two distinct tableaux we are able to
decide satisfiability using polynomial space.

Finally, the analysis of our method also points out that satisfiability
in ONL can be decided in nondeterministic polynomial time, if the
construction of auxiliary tableaux can be avoided. As an immediate
consequence of Definition 2, it follows that the construction of the
auxiliary tableau for a branch B is only needed when B contains at
least one formula of the form 0 : Kψ and at least one formula of the
form 0 : Nψ (otherwise the auxiliary tableau is closed, due to the
presence of the formula false in each branch of the auxiliary tableau).
Therefore, those branches in which there are either no formulae of the
form 0 : Kψ or no formulae of the form 0 : Nψ should be generated
first, which can be realized by avoiding, whenever possible, the addition
of modal subformulae of the form Kψ, Nψ, Oψ in the branch, by a
suitable application of branching rules, in particular the or-rule, not-
and-rule, and cut-rule. Observe that a branch can contain either no
formulae of the form 0 : Kψ or no formulae of the form 0 : Nψ even
if the initial formula contains occurrences of both K-subformulae and
N -subformulae.
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6. Related work and conclusions

The tableau calculus presented in this paper allows for establishing
the computational complexity of reasoning about only knowing and
knowing at most: in particular, we have proven that satisfiability in the
modal propositional fragment of ONL is Σp

2-complete, while validity is
Πp

2-complete. Hence, our tableau calculus is the first “optimal” method
for reasoning about only knowing and knowing at most.

Several studies have recently proposed tableau (or related) calculi
for nonmonotonic reasoning. E.g., tableaux [20, 19] and sequent cal-
culi [1] have been proposed for circumscription and minimal model
reasoning, and analogous methods have been defined for default logic
[23, 2]. Moreover, tableaux for nonmonotonic modal logics have been
presented, in particular for autoepistemic logic [18] and for both Mc-
Dermott and Doyle’s and ground nonmonotonic modal logics [4]. None
of such methods is able to deal with reasoning about only knowing and
knowing at most, since no embedding is known of the logic ONL (or
even the logic OL) into another nonmonotonic formalism.

On the other hand, it is well-known [3] that the logic ONL is able
to naturally embed some of the major nonmonotonic formalisms, i.e.,
autoepistemic logic, prerequisite-free default logic, (disjunctive) logic
programming under the stable model semantics, and circumscription.
Due to such embeddings, our method can be also seen as a general,
semantic-based tableau calculus which is able to uniformly cover a large
family of nonmonotonic formalisms.

Two possible developments of the present work are worth mention-
ing. The first one concerns the analysis of reasoning about only knowing
and knowing at most in a first-order setting: in particular, it should be
interesting to see whether it is possible to extend the tableau calculus
presented in this paper for the modal propositional case to (a fragment
of) the first-order modal language. Another interesting development is
the extension of the tableau method to the multi-agent generalization
of ONL [9, 7]. Notably, with respect to the single-agent case, such an
extension requires to face further semantical and computational issues,
since different alternative semantics have been proposed for the multi-
agent extension of ONL, and it has been shown [9] that reasoning in
each of such semantics is PSPACE-hard.
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