CONTROL SYSTEMS - 23/3/2019

1) Given

\[\begin{align*}
\dot{x} &= \begin{pmatrix} 0 & 0 \\ 0 & -2 \end{pmatrix} x + \begin{pmatrix} 1 \\ 0 \end{pmatrix} m + \begin{pmatrix} 0 \\ 1 \end{pmatrix} d, \\
w &= \begin{pmatrix} 1 & 0 \end{pmatrix} x,
\end{align*} \tag{1} \]

and \(P_2(s) = \frac{s^2}{s^3 + 1} \), determine, if any, a 2-dimensional controller \(G(s) \) such that the given feedback system has the following properties:

i) it is asymptotically stable with poles having negative real part \(\leq -2 \)

ii) the steady state output response \(y_{ss} \) to constant disturbances \(d(t) \) is 0.

Set \(d(t) = 0 \). Let \(PG \) the series interconnection of \(P_1, P_2 \) and \(G \). Draw the root locus of \(PG \) and determine for which values of \(K \in \mathbb{R} \) the feedback system \(W(s) = \frac{KPG(s)}{1 + KPG(s)} \) has all real poles.

3) Given

\[\begin{align*}
P_1 : \dot{x}_1 &= \begin{pmatrix} 0 & -10 \\ 1 & -11 \end{pmatrix} x_1 + \begin{pmatrix} 2 \\ 1 \end{pmatrix} m_1, \\
y_1 &= \begin{pmatrix} 0 & 1 \end{pmatrix} x_1,
\end{align*} \]

\[P_2 : \dot{x}_2 = -2x_2 + m_2, \quad y_2 = x_2, \]

determine, if any, controllers \(G(s) \) and \(K(s) \) such that the given feedback system has the following properties:

i) the input-output (from \(v \) to \(y \) transfer function \(W(s) \) has two complex poles \(\pm j \)

ii) the disturbance-output (from \(d \) to \(y \) transfer function \(W_d(s) \) is such that \(|W_d(j\omega)| \leq 0.1 \) for all \(\omega \in [0,10] \text{ rad/sec} \).