Exercise 1 We have in Laplace domain

\[Y(s) = \frac{P(s)}{1 + L(s)} d(s) + \frac{L(s)}{1 + L(s)} v(s), \quad L(s) = G(s)P(s), \]

so that \(W_d(s) = \frac{P(s)}{1 + L(s)} \) (disturbance-to-output transfer function) and \(W_e(s) = \frac{1}{1 + L(s)} \) (input-to-error transfer function).

(i) Since there is no integral action before the entering point of \(d \), we set \(G(s) = \frac{1}{s} \hat{G}(s) \) so that the steady state response with constant disturbances is

\[y_0 = W_d(0) = 0 \]

(ii),(iii) From (ii) we have the following constraint on \(\hat{G}(s) : |\hat{G}(j\omega)| \leq 36 \text{ dB} \) for all \(\omega \). The Bode plots of \(\hat{P}(s) = \frac{1}{s} P(s) \) are drawn in Fig. 1.

We have form the Bode plots in Fig. 1

\[|\hat{P}(j5)|_{dB} \approx -27.8 dB, \quad \text{Arg}(\hat{P}(j5)) \approx -191^\circ \]
\[|\hat{P}(j10)|_{dB} \approx 40 dB, \quad \text{Arg}(\hat{P}(j10)) \approx -180^\circ \]

Let us place the new crossover frequency \(\omega_\ast \) at 5 rad/sec with the desired phase margin \(\geq 30^\circ \), using \(\hat{G}(s) \) and recalling that we must satisfy \(\text{vert}\hat{G}(j\omega)| \leq 36 \text{ dB} \) for all \(\omega \). For doing this, \(\hat{G}(s) \) must be such that

\[|\hat{G}(j5)|_{dB} \approx 27.8 dB, \quad \text{Arg}(\hat{G}(j5)) \approx 42^\circ \]

Let

\[\hat{G}(s) = KR_a(s) = K \frac{1 + \tau a s}{1 + m a s} \]

and choose (from the compensating functions Bode plots) \(m_a = 6, \omega_N = 2 \text{ rad/sec} \) with \(\omega_\ast^\omega = 5 \). At \(\omega_N = 2 \text{ rad/sec} \) we have magnitude increase equal to 6 dB and phase increase equal to 45\(^\circ\). For \(\omega_\ast^\omega = 5 \) we obtain \(2 = \omega_N = \omega_\ast^\omega \tau_a = 5\tau_a \Rightarrow \tau_a = 2/5 \).

We have \(|R_a(j\omega_\ast^\omega)P(j\omega_\ast^\omega)| = -27.8 + 6dB = -21.8dB \) and \(\text{Arg}(\cdot) \approx -191^\circ + 45^\circ = 146^\circ \) which would imply a phase margin \(\approx 34^\circ \geq 30^\circ \)(as required by (iii)). For having an overall magnitude increase of 27.8dB at \(\omega_\ast^\omega = 5 \text{ rad/sec} \) we choose a proportional action \(K = 21.8dB \) so that to have \(\omega_\ast^\omega \approx 5 \text{ rad/sec} \). Our controller \(G(s) \) is finally

\[\hat{G}(s) = 12.28 \frac{1 + \frac{2}{5} s}{1 + \frac{1}{15} s} \]
The Bode plots of $G(s)P(s)$ and its Nyquist plot are drawn in Fig. 2 and 3. The Nyquist plot shows that the closed-loop system is asymptotically stable (we have $-1 + 1 = 0$ counterclockwise tours around the point $-1 + 0j$).

Exercise 2 We have in Laplace domain

\[
Y(s) = \frac{L_1(s)}{1 + L_2(s)}d_1(s) + \frac{1}{P(s)} \frac{L_1(s)}{1 + L_2(s)}d_2(s) + \frac{L_2(s)}{1 + L_2(s)}m(s)
\]

where $L_1(s) = \frac{P(s)}{1 + P(s)}$ and $L_2(s) = G(s)L_1(s)$.

(ii) Since the d_1 to y transfer function is $W_{d_1}(s) = \frac{L_1(s)}{1 + L_2(s)}$, we must have for unit ramp disturbance d_1

\[
\left| \frac{1}{s} \frac{L_1(s)}{1 + L_2(s)} \right|_{s=0} \leq 0.1 \Rightarrow \left| \frac{NUM(G(s))}{DEN(sG(s))} \right|_{s=0} \leq 0.1
\]
which implies that $G(s) = \frac{K_{G,1}}{s}G_2(s)$ with

$$|K_{G,1}| \geq 10.$$

Choose $|K_{G,1}| = 10$.

(iii) Since the d_1 to y transfer function is $W_{d_2}(s) = \frac{1}{P(s)} \frac{L_1(s)}{1+L_2(s)}$ we must have for constant disturbance d_2

$$\left. \frac{1}{P(s)} \frac{L_1(s)}{1+L_2(s)} \right|_{s=0} = 0$$

which is true thanks to the pole at $s = 0$ in $G(s)$.

(i) Recall that $G(s)$ is required to be two-dimensional. Therefore, $\tilde{G}(s)$ may have the form $\frac{K_{G,2}(s+z)^2}{s+p}$ so that $G(s) = \frac{1}{5} \tilde{G}(s)$ is indeed two dimensional and realizable (two pole-zero actions plus a proportional action). The direct path transfer function is

$$L_2(s) = G(s)L_1(s) = 10 \frac{s + 2}{s^2(s-1)^2} \tilde{G}(s)$$

the first zero of $\tilde{G}(s)$ will decrease the zero-pole excess from 3 to 2 and the zero-pole action will move the asymptote center to the left: the new asymptote center will be required to satisfy

$$s'_0 = \frac{4 - p + 2z}{2} < -1$$

Moreover, notice that the zeroes of $L_2(s)$ must be all with real part < -1 (in such a way that by increasing the gain the closed-loop poles will move to the left of $\text{Re}(s) = -1$). We choose $z = 3$ and $p = 20$. Next, we choose $K_{G,2}$ from the Routh table of $NUM(1 + G(s)P(s))|_{s=-1} = s^5 + 13s^4 + (K - 10)s^3 + (5K + 235)s^2(8K - 224)s + 4K + 76$. We obtain as first column of
Figure 4: Positive root locus of \(P(s) = \frac{(s+1)^2}{(s-1)(s^2+1)} \)

Figure 5: Negative root locus of \(P(s) = \frac{(s+1)^2}{(s-1)(s^2+1)} \)

the Routh table

\[
\begin{array}{cccc}
1 & & & \\
13 & & & \\
2K_{G_2} - 62 & & & \\
10K_{G_2}^2 - 165K_{G_2} - 4859 & & & \\
2(K_{G_2} - 31) & & & \\
18K_{G_2}^3 - 839K_{G_2}^2 + 404K_{G_2} + 256733 & & & \\
10K_{G_2}^2 - 165K_{G_2} - 4859 & & & \\
4K_{G_2} + 76 & & & \\
\end{array}
\]

which gives \(K_{G_2} > \max\{31, 19, 31.78\} = 31.78 \) for having no sign variations.
Exercise 3. (i) The zero-pole excess is \(n - m = 1 \), the asymptote center \(s_0 = 1 + 21 = 3 \) (it is not useful for \(n - m = 1 \)) and the singular points are determined by the equations:

\[
p(s, k) = (s^2 + 1)(s - 1) + K(s + 1)^2 = 0
\]
\[
\frac{d}{ds}p(s, k) = 2s^2 - 2s + s^2 + 1 + 2K(s + 1) = 0
\]

We obtain as solution \(s \approx -3.95 \). From the Routh table of \(NUM(1 + KP(s)) = s^3 + (K - 1)s^2 + (1 + 2K)s + K - 1 \) we obtain as first column

\[
\begin{align*}
1 \\
K - 1 \\
2K \\
K - 1
\end{align*}
\]

which implies \(K > 1 \) for having no sign variations. Therefore, the closed-loop system with any \(G(s) = K > 1 \) is asymptotically stable. The root locuses of \(P(s) = \frac{(s+1)^2}{s(s-1)(s^2+1)} \) have been drawn in Fig. 4 and 5.

(ii) The root locuses of \(P(s) = \frac{(s+1)^2}{s(s-1)(s^2+1)} \) have been drawn in Fig. 4 and 5. Notice the singular points \(s \approx 0.2 \pm 0.6j \) for \(K \approx 0.2 \) and \(s \approx 0.4 \) for \(K \approx 0.1 \) for the positive locus (Fig. 6) and \(s \approx -2.4 \) for \(K \approx -28 \) for the negative locus (Fig. 7). From the Routh table of \(NUM(1 + KP(s)) = s^4 - s^3 + (K + 1)s^2 + (2K - 1)s + K \) we obtain as first column

\[
\begin{align*}
1 \\
-1 \\
3K \\
2K(3K - 1) \\
K
\end{align*}
\]

which implies there is no \(G(s) = K \) for which the closed-loop system is asymptotically stable.
Exercise 4. Our process

\[
\dot{x} = Ax + Bu + \tilde{P}d, \ y = Cx
\]

(1)

where

\[
A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \ \tilde{P} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 0 \end{pmatrix}.
\]

We first check that \((A, B)\) is stabilizable. Indeed, it is even controllable \((R = (B \ 1AB) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}).\)

We solve the problem with the output regulation procedure. Since \(d = D\sin t\) we choose an exosystem for \(d\) of the form

\[
\dot{w}_d = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} w_d = S_d w_d
\]

whose solutions have the form

\[
\dot{w}_d = \begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} w_d(0)
\]

so that the disturbance is generated as \(d(t) = \begin{pmatrix} 1 & 0 \end{pmatrix} w_d(t) = Q_d d(t)\) corresponding to the initial conditions \(w_d(0) = \begin{pmatrix} 0 \\ D \end{pmatrix}\).

Since \(v = \delta_{-1}(t)\) we choose an exosystem for \(v\) of the form

\[
\dot{w}_v = 0 = S_v w_v
\]

whose solutions have the form

\[
\dot{w}_v = w_v(0)
\]
so that the reference input \(v\) is generated as \(v(t) = w_v(t) = Q_v v(t)\) corresponding to the initial conditions \(w_v(0) = 1\). In the overall, we have the exosystem

\[
\dot{w} = \begin{pmatrix} S_d & 0 \\ 0 & S_v \end{pmatrix} w = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} w
\]

and \(w = \begin{pmatrix} w_d \\ w_v \end{pmatrix}\). The output of the exosystem \(q = Qw\) for generating the vector \(\begin{pmatrix} d \\ v \end{pmatrix}\) (disturbances and reference inputs) will be

\[
q = \begin{pmatrix} d \\ v \end{pmatrix} = Qw = \begin{pmatrix} Q_d & 0 \\ 0 & Q_v \end{pmatrix} w = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} w
\]

Finally the tracking error is defined as

\[
e = y - v = Cx - Q_v w = \begin{pmatrix} 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} w
\]

The process (1) together with the exosystem becomes

\[
\begin{align*}
\dot{x} &= Ax + Bu + Pd, \\
\dot{w} &= Sw, \\
e &= Cx + Qw,
\end{align*}
\]

(2) (3)

with

\[
P = \tilde{P}Q_w = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad Q = -Q_v = \begin{pmatrix} 0 & 0 & -1 \end{pmatrix}.
\]

The regulator equations to be solved foursome \(\Pi \in \mathbb{R}^{2 \times 3}\) and \(\Gamma \in \mathbb{R}^{1 \times 3}\) are

\[
\Pi S = A\Pi + B\Gamma + P
\]

\(C\Pi = Q\)

From the second equation

\[
\begin{pmatrix} 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} \pi_1 \\ \pi_2 \end{pmatrix} \Rightarrow \pi_1 = \begin{pmatrix} 0 & 0 & 1 \end{pmatrix}
\]

and using this in the first equation we get

\[
\pi_2 = \begin{pmatrix} -1 & 0 & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 0 & -1 & 0 \end{pmatrix}.
\]

Therefore,

\[
\Pi = \begin{pmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}, \quad \Gamma = \begin{pmatrix} 0 & -1 & 0 \end{pmatrix}
\]
and the (state feedback) regulator is given by

\[u = F(x - \Pi w) + \Gamma w \]

where \(F \in \mathbb{R}^{1 \times 2} \) is any matrix for which \(\sigma(A + BF) \in \mathbb{C}^- \) (use Ackermann’s formula for finding \(F: F = -\gamma p^*(A) \)). For example, with \(F = \begin{pmatrix} -1 & -2 \end{pmatrix} \) we assign the eigenvalues of \(A + BF \) both in \(-1\).