
1

Implementations and empirical comparison of K shortest loopless
path algorithms

Marta M. B. Pascoal

Departamento de Matemática da Universidade de Coimbra,

Apartado 3008, 3001-454 Coimbra, Portugal

Phone: +351 239 791150, Fax: +351 239 832568

Instituto de Engenharia de Sistemas e Computadores – Coimbra

Rua Antero de Quental, 199, 3000-033 Coimbra, Portugal

E-mail: marta@mat.uc.pt

November 2006

Abstract: The first work on the network optimisation problem of ranking K shortest paths, K ∈
IN, appeared in 1959, more or less simultaneously with the first papers on the shortest path prob-
lem. Since then the particular problem (when K = 1) has merited much more attention than its
generalisation. Nevertheless, several titles are included on the very complete bibliography about
the K shortest paths problem, online at http://www.ics.uci.edu/∼eppstein/bibs/kpath.bib,
many of them concerning problems related with the K shortest paths problem and real word ap-
plications. With the development of computers and data structures there has been an increasing
interest from the researchers on this problem, as larger problems resulting from real world appli-
cations, demanding more space of memory as well as quick responses, can now be solved.

In this paper we focus on the K shortest loopless paths problem, the variant where paths are not
allowed to have repeated nodes. We survey algorithms for this problem, introduce a new method
to solve it, and compare empirically their implementations.

Keywords: network optimisation, shortest path, K shortest loopless paths, algorithms.

1 Introduction

The ranking of shortest paths is a classical network optimisation problem. The first title on this topic
appeared in 1959 [6], more or less at the same time the first papers on the shortest path problem, the
resulting problem when K = 1, have been published. Since then the particular problem (for K = 1)
has merited much more attention from the researchers than its generalisation. In fact, while hundreds of
references on the shortest path problem can be found in the specialised literature (see, for instance, [2])
only around fifty titles are included on the very complete bibliography on the K shortest paths problem,
available at http://www.ics.uci.edu/∼eppstein/bibs/kpath.bib. Moreover, most of the titles in this
bibliography concern problems related with the ranking of shortest paths problem and real word applications.

Some reasons for the less interest that the K shortest paths problem has merited from the researchers
can be pointed out, one of them being the great amount of data manipulated in the general problem. In fact,
computers random access memory is becoming cheaper and data structure more efficient but not many years
ago large problems, as those resulting from real world applications, could only be solved on super computers.
Nevertheless, ranking loopless paths can be used to obtain alternative solutions to the optimal, when it is
intended to look for paths subject to additional constraints, or as a subproblem of other combinatorial
problems, and, despite the less interest on the problem, some works on this subject have been published.

It is common to consider two types of problems: an unconstrained one in which all paths are allowed,
the K shortest paths problem, and another one in which only loopless paths, that is paths with no repeated
nodes, are admitted, the K shortest loopless paths problem. These two variants of the problem are closely
related. In general the later one is more interesting from a practical point of view, however its resolution

2

is harder, as a consequence of the constraint on repeating nodes. In this work we focus on approaches for
solving the K shortest loopless paths problem.

Section 2 first provides some notation and defines the problem of ranking the K shortest loopless paths.
Then the algorithms for this problem are briefly introduced and implementations details are discussed.
Finally, section 3 is devoted to the presentation of test results comparing those implementations.

2 The K shortest loopless paths problem

Let (N ,A) be a network with n nodes and m arcs, where any (i, j) ∈ A is assigned with the value cij ∈ IR,
that denotes the cost, or distance, of (i, j).

A path p from i ∈ N to j ∈ N in (N ,A) is a sequence of the form p = 〈i = v1, v2, . . . , j = vℓ(p)〉, where
(vk, vk+1) ∈ A, for any k ∈ {1, . . . , ℓ(p)− 1}. Here ℓ(p) is called the length of p, that is, its number of nodes,
while i and j are called the initial and terminal nodes of path p, respectively. The total cost, or distance, of

p is defined by c(p) =
∑

(u,v)∈p

cuv. Given x and y two nodes of p, subp(x, y) represents its subpath from x to

y. A path is said to be loopless when it has no repeated nodes.
The set of (loopless) paths from i to j in (N ,A) will be denoted by Pij (P̄ij), and given an initial, s, and

a terminal, t, nodes (s 6= t), then P (P̄) will be used for Pst (P̄st). The concatenation of p ∈ Pij , q ∈ Pjℓ,
denoted by p ⋄ q, is the path from i to ℓ formed by path p followed by q.

Given K ∈ IN, in the K shortest loopless paths problem is intended to compute loopless paths p1, . . . , pK

from s to t in (N ,A), by non-decreasing order of the cost, that is, such that c(p1) ≤ . . . ≤ c(pK) and
c(pK) ≤ c(p), for any p ∈ P̄ − {p1, . . . , pK}.

2.1 Deviation algorithms for the K shortest loopless paths problem

The algorithms for this problem use a set X to store the loopless paths candidates to pk, k = 1, . . . , K.
This set is initialised with the shortest path, p1, and when p1, . . . , pk−1 have been determined pk is the
shortest candidate in X . Once pk is selected, and deleted, in X its nodes are analysed, in order to generate
new candidates with a low cost. As the generated candidates are deviations of pk (for they have an initial
subpath common with pk after what they split at some node) these algorithms are also known as deviation
algorithms, and their variants differ on the deviations computed or on the method used to obtain them. The
easiest way to find such a deviation is to delete the arc of pk that starts at the scanned node, and then take
the shortest path from that node to t. However, this procedure can generate paths with loops, therefore it
demands the loopless condition to be checked and the selection of an a priori unknown number of candidates,
until K loopless paths have been determined. Algorithms based on this idea can be found in [9, 10]. In this
following we will focus on deviation algorithms that generate only loopless paths, and therefore that scan
exactly K loopless paths.

Yen’s algorithm The first algorithm developed to rank loopless paths was presented by Yen in 1971 [11].
Assuming the k shortest loopless path has the form pk = 〈v1 = s, . . . , vℓ(pk) = t〉, for k = 1, . . . , K, Yen’s
proposal to obtain new candidates is to partition the set of loopless paths in the following way:

P̄ − {p1} =
⋃ℓ(p1)

i=1 P̄1(vi) ,

P̄j(vd(pk)) − {pk} =
⋃ℓ(pk)

i=d(pk) P̄
k(vi), k > 1 ,

(1)

where P̄j(vi) denotes the set of the loopless paths, different from p1, . . . , pj, that have subpj
(s, vi) as the

initial subpath, common with path pj , for some 1 ≤ j < k. When a pk is picked up in X the set P̄j(vd(pk))
where pk was determined is considered, which means that it is partitioned by computing the shortest loopless
path in each of the subsets in (1). Yen noted that the best deviation from pk at node vi is subpk

(s, vi) ⋄ qi,
where qi is the shortest path from vi to t, when the nodes v1, . . . , vi−1 and the arcs (vi, x) ∈ {p1, . . . , pk}
are removed from the network. The loopless path pk is called the father of the new candidates determined
(known as pk sons or pk deviations) and vd(pk) the deviation node of pk. Thus, analysing a given pk consists

3

of modifying (N ,A), by deleting some arcs and some nodes, and solving a shortest path problem between a
pair of nodes.

Perko’s algorithm In 1986 Perko [10] presented implementations of deviation algorithms for ranking
loopless paths, in particular of Yen’s algorithm. From his work we remark the utilisation of upperbounds
on the cost of the candidates to generate, in order to decrease the number of stored deviations, as well as
to reduce the number of solved subproblems, and the introduction of a special representation of the list of
nodes to be labeled when solving the sequence of shortest path problems resulting from the analysis of some
pk, in order to avoid the initialisations. We will go into further details later on.

Martins & Pascoal’s algorithm Noting the similarity of the subproblems that have to be solved in Yen’s
algorithm when scanning some pk, in 2003 Martins & Pascoal [8] introduced a variant where the nodes are
analysed by a particular order. Instead of deleting arcs and nodes in the network, analysing the pk nodes
from vℓ(pk) = t to vd(pk) allows to reoptimise each shortest path by the insertion of new arcs and nodes, and
to replace the resolution of shortest path problems by these reoptimisations

Katoh, Ibaraki & Mine’s algorithm Another deviation algorithm that uses only loopless paths was
introduced in 1982 by Katoh, Ibaraki & Mine [7]. This algorithm is only valid for undirected networks
and it uses their characteristics to generate, at most, three deviations for each analysed pk. The difference
between Yen’s algorithm and this one is in the partition used to generate new candidates, and therefore in
the candidates generated when some pk is scanned. Let pj be the father of some loopless path pk, and:

• vδ be the deviation node of a son of pj , previous to vd(pk) and farther from s,

• vγ be the deviation node of another son of pj, closer to s but after vd(pk).

If P̄j
k(vδ, vγ) denotes the set of loopless paths of the form q′ = subpj

(s, vδ) ⋄ q 6∈ {p1, . . . , pk}, where q is a
path from vδ to t that deviates from pj before vγ , then,

P̄ − {p1} = P̄1
2 (s, t) ,

P̄j
k(vδ, vγ) − {pk} = P̄j

k+1(vδ, vd(pk)) ∪ P̄j
k+1(vd(pk), vγ) ∪ P̄k

k+1(vd(pk)+1, t), k > 1 .
(2)

The analysis of a pk consists of determining the shortest loopless paths in the subsets above, namely:

• the shortest path in P̄j
k+1(vδ, vd(pk)), i.e., which deviates from pj between vδ and vd(pk),

• the shortest path in P̄j
k+1(vd(pk), vγ), i.e., which deviates from pj between vd(pk) and vγ ,

• and the shortest path in P̄k
k+1(vd(pk)+1, t), i.e., which deviates from pk between vd(pk)+1 and t.

Furthermore, Katoh et al. showed that the solution of each of these subproblems can be found by solving
two single source shortest path problems, after proper modifications of (N ,A). Let Ts be the tree of shortest
paths from s to any node, Tt be the tree of shortest paths from any node to t, and let Ts(i) be the path from
s to i ∈ N in Ts and ξs(i) be the index of the node where Ts(i) and Ts(t) split (analogously for Tt(i) and
ξt(i)). Given p∗ = 〈s = v1, . . . , vℓ(p∗) = t〉 = Ts(t) = Tt(s) the shortest path that deviates from p∗ before a
node vα is of type 1 or 2:

1. Ts(i) ⋄ Tt(i), with i ∈ N such that ξs(i) < α,

2. Ts(i) ⋄ 〈i, j〉 ⋄ Tt(j), with (i, j) ∈ A− (Ts ∪ Tt) and ξs(i) < α.

In [5] Hadjiconstantinou & Christofides presented details about an implementation of Katoh et al.’s algo-
rithm.

4

Hybrid algorithm Deviation algorithms similar to Yen’s algorithm can be applied to the unconstrained
ranking paths problem, although in that case it’s easier to compute a deviation. In fact, the best path from
s to t that deviates from pk at vi has the form: subpk

(s, vi)⋄ (vi, j)⋄Tt(j), such that (vi, j) doesn’t belong to
any of the candidates computed so far. The generation of new candidates by this method is more efficient,
as each shortest path problem is replaced by the selection of an arc (which, as described in subsection 2.3,
can be made in constant time), however it may produce paths with loops when subpk

(s, vi) and Tt(j) share
some nodes. The hybrid algorithm uses this candidate generation procedure whenever it returns a loopless
path, and changes into the Yen’s algorithm routine otherwise.

2.2 Implementation considerations

The main operations, both in Yen’s and Katoh et al.’s algorithms, are changing the original network, by
deleting nodes and arcs, and solving subproblems, consisting of finding shortest paths between a pair of
nodes. When implementing these algorithms other issues have to be taken into account, concerning the data
structures used for representing the network and for storing the generated loopless path candidates.

Storage of paths The nodes of each generated candidate depend on its father, and on the conditions of
the network where it was obtained, namely the deleted nodes and arcs. Once this information is known,
also the complete loopless path can be found by means of solving a shortest path problem. Nevertheless, to
avoid the replication of these problems, as well as to get direct access to the nodes of a given candidate, it
is useful to store the shortest path that is the solution of each subproblem solved whenever some pk node is
scanned. For this purpose a trie structure can be used. A trie works like a tree but takes advantage of the
fact that many of the stored loopless paths start with the same sequence of nodes. Thus, a loopless path p

is represented by: subp(vd(p), t), vd(p), and a link to its father loopless path. Its nodes can be retrieved by
scanning the stored final part of every antecessor of p, from its father until p1. See [3] for details on this
data structure. On the other hand, when implementing the hybrid algorithm the data structure has to be
hybrid as well, taking into account that the paths generated by Yen’s procedure have to be represented with
the trie structure, and that it’s enough to represent the paths resulting from the choice of one arc by the arc
deleted when obtaining it.

Still related with this point, the structure used to access the candidate loopless paths has to be established.
Unlike in Katoh et al.’s algorithm, where at most 3K candidates are computed, in Yen’s algorithm the number
of generated candidates depends on the number of nodes that have to be scanned for every path pk, which
yields to a bound of Kn candidates. Assuming K to be known in advance we can opt, in either case, for:

• storing all the computed candidates,

• maintaining at most the K shortest ones in every step of the algorithm (this implies to replace the
stored candidate with the worst cost whenever a better one is found, after K loopless paths are known),

• or, an intermediate approach, storing every candidate until there are K and after that keeping only
those with a cost lower than the maximum cost of those K candidates.

In each iteration of those algorithms the shortest candidate has to be selected in the set X . Thus, it
is recommended to represent this set as an ordered data structure, for instance as a heap or with the Dial
variant for priority queues, with an array of buckets with a cyclically moving array index (see [1]).

Network representation The structure used to represent the network depends on the method used to
find shortest paths. Two options are usually considered: one is to analyse the arcs emerging from any node
in the network, and therefore representing it in the forward star form, while the other is to analyse the arcs
that end in any node in the network, therefore using the backward star form. See [4] for details on these
data representations.

Network modifications As mentioned above the subproblems to be solved appear in subnetworks of
(N ,A), and the necessary modifications are nodes and arcs deletions. The easiest, and the most efficient,
way to implement these changes is to mark the non-available nodes and arcs, for instance using negative
values whenever a node/arc is deleted, or else using two extra arrays.

5

Shortest path algorithms As already mentioned, the key for the algorithms by Yen and Katoh et al. is
the resolution of several shortest path problems, between a given pair of nodes in the first case, and with
a single source node in the second. In straightforward implementations of these algorithms any method for
these problems can be used.

Still related with this point, but apart from selecting the routine for the subproblems, we drive our
attention to two proposals. On the one hand the data structure used by Perko [10] for solving the successive
shortest path problems when scanning some pk, that aims to decrease the number of initialisations in such
a sequence of resolutions, and on the other the variant of Martins & Pascoal [8], that takes advantage of the
similarity of the subproblems to be solved when scanning each pk, and replace them by the reoptimisation
of shortest paths for each node of pk that is analysed.

Finally, concerning both the number of candidates that are stored and the number of subproblems that
are solved, we recall that a deviation of pk at vi is subpk

(s, vi) ⋄ (vi, j) ⋄ Tt(j), for a certain arc (vi, j), and
the minimum cost of a path of this form is a lowerbound on the cost of the deviation to be determined
when scanning vi. Then, the resolution of the subproblem can be skipped whenever that cost exceeds the
maximum cost of a stored candidate (assuming at least K loopless paths are known). It should be noted
that this last bound is related with the algorithms for the K shortest loopless paths problem that are allowed
to generate paths containing loops.

2.3 Theoretical complexity bounds

As expected, in terms of the number of operations performed and the space of memory used, the implemen-
tations described fit into two groups, the Yen’s like algorithms and the algorithm by Katoh et al.. We shall
also see that the hybrid method can be considered as an “outsider”.

Let us first focus on the number of operations performed by the original version of Yen’s algorithm.
Among those operations one should remark the shortest path computation, of O(c(n)), and later the selection
and analysis of K loopless paths. Considering that at most K loopless paths are maintained in the candidates
list, the insertion of a new candidate can be done in O(log K), while the selection of the best one can be done
in O(1). For each pk that is listed at most n nodes have to be scanned, and therefore, after deleting some
nodes and arcs of the original network, n shortest path problems have to be solved and their solutions have
to be stored. Thus, the worst-case complexity order for this algorithm is O(c(n)+K(nc(n)+n+ logK)), or
simply O(Kc(n)) if we omit the term O(log K) (which is, in general, dominated by the others). Two factors
are expected to strongly influence the effective number of operations: the method that is used to solve the
shortest path problem, as well as the length of the loopless paths generated, that is, their number of nodes.

When implementing Perko’s version of this algorithm only some initializations are avoided and then Yen’s
algorithm complexity order remains valid. The situation is slightly different when concerning Martins and
Pascoal implementation. In fact its worst-case occurs when inserting a new node into a path is as hard
as solving a new point-to-point shortest path problem, and this leads to the worst-case bound for Yen’s
algorithm. In an “optimistic” case labeling the nodes corresponds to computing a single shortest path, and
then the number of operations is improved to o(Kc(n)).

As mentioned earlier, the hybrid algorithm demands the choice of an arc when every node of a path pk

is scanned. In order to make immediate the choice of the arc (vi, j) when scanning node vi, each arc cost
cxy can be replaced by the reduced cost c̄xy = cxy − c(Tt(x)) + c(Tt(y)), for any (x, y) ∈ A. As cxy ≥ 0
for any (x, y) ∈ A, and cxy = 0 for (x, y) ∈ Tt, the arc to select is the one with the minimum reduced cost
that starts at vi. For applying this procedure a pre-processing phase is necessary, which should consist of:
determining Tt, replacing the costs by the reduced costs, and sorting A, in order to represent (N ,A) in the
sorted forward star form – see [4].

The worst-case number of operations performed with the hybrid method is identical to Yen’s, O(Knc(n)),
while in an optimistic case all deviations are loopless, so o(Kn log K + c(n) + m log n), or simply o(Kn +
c(n) + m log n).

The method by Katoh et al. has the advantage of limiting to 3 the number of candidates generated with
the scan of each pk, therefore the worst-case number of operations is O(c(n)+ K(d(n)+ logK)), where d(n)
stands for the number of operations for solving the single source shortest path problem, or simply O(Kd(n)).

In terms of the necessary memory space it should be noted that in Yen’s algorithm the network, as well

6

as the trie structure containing the candidate loopless paths, have to be stored. As each loopless path has,
at most, n nodes the worst-case space bound for this method is O(m + n + Kn2), that is, O(Kn2). Once
again the length of the candidates generated determines, not only, the size of the trie, but also the number
of candidates generated itself. The same bound is valid for the variants by Perko and by Martins & Pascoal,
as their implementations compute exactly the same candidates, and use the same structure to store them.

The situation is different for algorithms by Katoh et al. and the hybrid. In the first case up to 3 new
candidates are generated for any pk, therefore the worst-case memory space complexity is O(m + n + Kn),
or O(m + Kn). As for the number of operations, the hybrid algorithm shares the Yen’s algorithm space
complexity order in the worst-case, O(Kn2). However, as a candidate is obtained without solving a shortest
path problem can be identified only by the deleted arc, in an optimistic case the complexity coincides with
the Katoh et al.’s algorithm one, o(m + Kn).

3 Implementations and computational tests

In this section test results on the core benchmarks provided are reported comparing the following implemen-
tations:

• Y: A straightforward implementation of Yen’s algorithm, where nodes in pk are analysed by the usual
order (from vd(pk) to t). A label correcting algorithm is used to solve the single source shortest path
problems. The list of temporary labels is manipulated as a FIFO.

• YD: Similar to Y but using a label setting algorithm to solve the single source shortest path problems.
The list of temporary labels is implemented using the Dial priority queue.

• YDI: Similar to YD but now point to point shortest path problems are solved. With this goal Dijkstra’s
algorithm is interrupted as soon as the terminal node has a permanent label.

• P: An implementation of the variant proposed by Perko, using its list of labeled nodes.

• MP: An implementation of the variant by Martins & Pascoal. Labeling of nodes uses a FIFO list.

• HY: A hybrid version of Yen’s algorithm that first looks for a deviation with the form subpk
(s, vi) ⋄

(vi, j) ⋄ Tt(j), and uses it if it contains no loops. Otherwise a shortest path problem is solved, as in
the common Yen’s algorithm with a label setting technique halted as soon as the terminal node has a
permanent label.

• KIM: An implementation of Katoh, Ibaraki & Mine’s algorithm. A label correcting algorithm using a
FIFO list is applied to solve the single source shortest path problems.

All the codes were written in C language and compiled with the GNU compiler and optimisation option -O3.
As the experiments made with the YD version showed a performance worse than the Y code, the results for
that variant will not be presented.

In these implementations a trie structure was used to represent the candidates. In the hybrid algorithm
this structure is maintained together with the representation of loopless path deviations with a pointer to
its father and the deleted arc. The set of candidates was represented following the Dial’s variant of priority
queues. After K candidates have been stored only candidates better than those ones were stored. Codes Y,
YD and YDI demanded the network to be represented in the forward star form, while for the remaining ones
the backward star form was used as well.

3.1 Random graphs

The tests over the Random-n family provided for the workshop were carried out on a Pentium 4 with a 2.4 GHz
processor, 1 MB of cache and 1 Gb of RAM, running over SUSE Linux 9.3, With this first set of tests we
intended to compare the implementations behaviour, namely in terms of the shortest path computation, and
of the K = 100 shortest loopless path ranking. The results presented in the following are average values
obtained for each graph, when ranking 100 loopless paths between 1000 source-destination pairs of nodes.

7

10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

n

S
ec

on
ds

Random−n, p
1

Y
YDI
P
MP
H

10 11 12 13 14 15
10

−2

10
−1

10
0

10
1

10
2

n

S
ec

on
ds

Random−n, p
100

Y
YDI
P
MP
H

Figure 1: Average CPU times (in log scale) on the Random-n class

Figure 1 presents the average CPU times of each implementation to compute the shortest path, p1, and
then to find paths p1, . . . , p100, while table 1 presents the average total CPU times. When the total execution
time of an implementation was too high (approximately 1 minute) that implementation was excluded from
the following tests.

Code\n 10 11 12 13 14 15 16

Y 0.13606 0.30722 0.78312 2.44271 9.75297 44.65218 —

YDI 0.16301 0.38020 0.82049 2.03801 9.74852 37.09130 78.42155

P 0.01449 0.05254 0.11957 0.55174 1.37516 5.41105 21.21274

MP 0.03040 0.07325 0.16993 0.52642 2.11223 8.90611 30.11306

HY 0.01936 0.04626 0.08135 0.19749 0.44646 1.14174 3.70977

Code\n 16 17 18 19 20 21

HY 3.70977 7.16976 15.25910 22.11902 58.28594 166.71764

Table 1: Average total CPU times (in seconds) for K = 100 on the Random-n class

The times to determine the shortest path were very close for all the codes, although those that use a
label setting algorithm have ran, in general, slightly faster than the ones using the label correcting version.

In what concerns the loopless path ranking we can distinguish two sets of methods: the straightforward
implementations of Yen’s algorithm, Y and YDI, and the codes P, MP, H. It is clear the increase of the running
times with the value of n that defines the number of nodes in the network (2n). Interrupting the shortest path
routine when the destination node is reached seems to be advantageous, except for the smallest problems. P
outperformed MP, although its running times appeared to be more sensitive to the increase of n than those
obtained by MP. Nevertheless, HY was the most efficient code in almost any problem.

These conclusions were reinforced by the second set of tests, aimed to evaluate the efficiency of the
codes with the growth of K, the number of ranked loopless paths. This time K = 1000 loopless paths were
computed and only the graphs with n = 10, 11, 12, 13, 14, 15 were used. The partial running times obtained
are shown in figure 2 and appear to increase linearly with K for every code. For these higher values of K

the implementation Y ran faster than YDI in small networks (n = 10), and for n ≥ 13, the inverse situation
was observed. Unlike what happened in the first set of tests, now P was slower than MP. Still, the hybrid
version was the code with the most efficient and the most stable performance, being able to rank 1000 paths
in 4 seconds.

Recalling that the codes Y, YDI, P and MP have identical space requirements, figure 3 and table 2 present
average results on the number of loopless path nodes stored when ranking K = 1000 loopless paths in the
classes Random-n, Long-n and Square-n involving the implementations MP and HY. The partial results (in

8

100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

K

S
ec

on
ds

Random−n, n=10

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

K

S
ec

on
ds

Random−n, n=11

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

K

S
ec

on
ds

Random−n, n=12

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

K

S
ec

on
ds

Random−n, n=13

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

K

S
ec

on
ds

Random−n, n=14

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

K

S
ec

on
ds

Random−n, n=15

YDI
P
MP
H

Figure 2: Average partial CPU times on the Random-n class

9

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

4

K

no

de
s

Random−n, n=13

MP
H

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5
x 10

6

K

no

de
s

Long−n, n=13

MP
H

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

5

K

no

de
s

Square−n, n=13

MP
H

Figure 3: Average partial number of loopless path nodes stored

n 10 11 12 13 14 15 16

MP on Random-n 57912 71239 80287 94586 111906 123934 142163

HY on Random-n 12799 17595 11667 13350 15810 12125 14100

MP on Long-n 120308 312380 996225 3052028 — — —

HY on Long-n 91787 219387 625630 1952148 — — —

MP on Square-n 74634 134770 234473 352835 791557 1154152 —

HY on Square-n 57703 99179 156961 228919 484212 667407 —

Table 2: Average total number of loopless path nodes stored

figure 3) for different values of n were similar, in relative terms, therefore only the n = 13 case is depicted.
The size of the trie structure used, that is, the number of candidate nodes stored, represented in these
graphics shown a linear dependence with K. The difference of that size for the two codes was evident and
increased with K, specially for the Random-n graphs.

n 10 11 12 13 14 15 16

of nodes scanned 6944 7682 8237 9002 9875 10365 10939

of shortest path computations 1606 1980 1282 1450 1553 1207 1632

of shortest paths stored 1408 1748 1110 1174 1320 907 1284

Table 3: Average total number of subproblems solved by HY for K = 1000 on the Random-n class

Table 3 concerns only the Random-n class and allows to get more complete information about the sub-
problems that HY solved, and how it improved the other Yen’s like variants. It should be remarked that
the first line, concerning the number of nodes that were scanned during the ranking, is also valid for the
remaining Yen’s like versions. The main difference is that in HY some of the scans consist only is selecting one
arc (instead of implying a shortest path computation). The number of times that a shortest path problem
had to be solved is given in the second line, while the last one simply shows the cases when that problem
had a solution.

From the number of nodes scanned in table 3 and the total number of nodes stored in table 2 one can
conclude that the average length of the listed loopless paths on these graphs was between 8 and 13 (increasing
with the size of the graph). As we shall see later, the average length is bigger for the other classes, between
10 and 25 nodes in the Square-n class, and from 12 to 56 in the Long-n class.

Finally, one can conclude that in the instances tested the majority of the candidates have been generated
only by the arc selection procedure, thus decreasing the number of shortest path computations, which
explains the best performance of code HY.

Intending to study the behaviour of HY for bigger problems, a few more tests were made considering
higher values of K. The average results when finding K = 10000 loopless paths in Square-n.15.0.gr for
50 queries are summarised in figure 4.

10

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

350

400

450

K

S
ec

on
ds

Random−n, n=20

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

50

100

150

200

250

300

350

K

S
ec

on
ds

Square−n, n=15

Figure 4: Average partial CPU times of HY on big dimension problems

3.2 Grid graphs

The tests over the Long-n and Square-n families were carried out on the same machine and the sets of
experiments were also similar to the ones mentioned in the last section for the Random-n graphs. We begin
by showing average running times to find the shortest path and to rank K = 100 loopless paths on the
Long-n class of graphs, in figure 5 and table 4.

10 11 12 13
10

−4

10
−3

10
−2

10
−1

K

S
ec

on
ds

Long−n, p
1

Y
YDI
P
MP
H

10 11 12 13
10

−2

10
−1

10
0

10
1

10
2

10
3

n

S
ec

on
ds

Long−n, p
100

Y
YDI
P
MP
H

Figure 5: Average CPU times (in log scale) on the Long-n class

It was harder to solve the same problem on these benchmarks, for any of the codes, therefore the results
presented concern only smaller values of n. This may be due to the fact that the loopless paths in these type
of networks are longer, which, as mentioned, makes the codes behaviour closer to the worst-case complexity
order. In fact, as mentioned in the previous section, the average length of the listed loopless paths varied
between 12 and 56 nodes – see table 5 – which is greater than the length observed for the Random-n class.

Code Y continued presenting worse results than YDI, but the relative behaviour of the other versions
depended on the classes of graphs. The average results now obtained with P were clearly worse than the
ones obtained with MP. This was particularly noted for the Long-n class of benchmarks, where P had a highly
unstable behaviour. In fact, some of the problems were solved very quickly (even faster than with the HY

code), but many others took much longer (even longer than with the Y code). For instance, in the 1000
queries ran for the graph Long-n.13.0.gr the range of the total CPU times of P for finding p1, . . . , p100

11

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

K

S
ec

on
ds

Long−n, n=10

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

K

S
ec

on
ds

Long−n, n=11

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

800

K

S
ec

on
ds

Long−n, n=12

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

K

S
ec

on
ds

Long−n, n=13

MP
H

Figure 6: Average partial CPU times on the Long-n class

12

Code\n 10 11 12 13 14 15

Y 0.28219 1.96509 5.37230 149.74375 — —

YDI 0.23153 1.02151 5.81163 41.93847 — —

P 0.09284 0.67735 0.63993 419.60120 — —

MP 0.05874 0.22719 0.67731 6.51990 158.75268 —

HY 0.04779 0.15646 0.91010 3.97553 21.95746 50.19182

Table 4: Average total CPU times (in seconds) for K = 100 on the Long-n class

n 10 11 12 13 14

of nodes scanned 9974 15769 27592 54784 183400

of shortest path computations 8028 11370 17756 32219 106777

of shortest paths stored 7804 11175 17399 31700 106082

Table 5: Average total number of subproblems solved by HY for K = 1000 on the Long-n class

varied between 0.025 and 10088.840 seconds.
Table 5 also shows that, unlike what happened in the Random-n class, now most of the candidates

generated with code HY were obtained by means of a shortest path computation, which might explain the
worst performance of this code.

Code\n 10 11 12 13 14 15 16

Y 0.18252 0.70128 2.28784 10.31545 72.59006 — —

YDI 0.14302 0.43074 1.23832 4.44411 18.56675 81.36826 —

P 0.05430 0.24050 0.67023 2.82218 15.46259 229.43365 —

MP 0.04108 0.12028 0.32425 1.10768 5.60908 31.75998 119.05751

HY 0.03415 0.07844 0.17907 0.46606 1.18535 3.58459 11.76380

Code\n 17 18 19

HY 33.88140 104.98517 251.74028

Table 6: Average total CPU times (in seconds) for K = 100 on the Square-n class

Instances in the Square-n class were easier to solve than for class Long-n, but still analogous remarks
are due concerning the implementations performance on these benchmarks. The average running times to
compute p1 and p1, . . . , p100 on those graphs are presented in figure 7 and table 6, while figure 8 shows the
partial times when ranking 1000 loopless paths.

As observed for the Long-n graphs, the behaviour of P was very unstable on Square-n graphs, although
with less dramatic results. For instance, in graph Square-n.14.0.gr the CPU times varied between 2.348
and 16.565 for code MP, and between 0.167 and 8.832 for code HY, while for P the minimum was 0.143 and
the maximum 79.995 seconds. Now the average length of the loopless paths ranked varied between 10 and
25 nodes – see table 7 – and still in about 70% of the cases code HY had to apply a shortest path routine in
order to obtain a new candidate.

3.3 Road graphs

The tests on real-world instances were carried out on a Pentium 4 with a 3 GHz processor, 2 MB of cache
and 1 Gb of RAM, running over SUSE Linux 9.3.

This was the only class where KIM code was tested. One of the reasons is that the graphs in this family
are undirected, and the other one is that the performance of this code, in terms of running times was clearly
worse than the best straightforward implementation of Yen’s algorithm, YDI. Table 8 and figure 9 show
average results of the total and partial running times, respectively, over 50 queries for the smallest of these
networks, USA-road-d.NY.gr and USA-road-t.NY.gr.

13

10 11 12 13 14 15
10

−4

10
−3

10
−2

10
−1

10
0

n

S
ec

on
ds

Square−n, p
1

Y
YDI
P
MP
H

10 11 12 13 14 15
10

−2

10
−1

10
0

10
1

10
2

10
3

n

S
ec

on
ds

Square−n, p
100

Y
YDI
P
MP
H

Figure 7: Average CPU times (in log scale) on the Square-n class

100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

K

S
ec

on
ds

Square−n, n=10

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

K

S
ec

on
ds

Square−n, n=11

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

30

35

K

S
ec

on
ds

Square−n, n=12

Y
YDI
P
MP
H

100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

120

140

160

K

S
ec

on
ds

Square−n, n=13

Y
YDI
P
MP
H

Figure 8: Average partial CPU times on the Square-n class

14

n 10 11 12 13 14 15

of nodes scanned 7732 11147 14367 18883 27574 45842

of shortest path computations 6221 8419 9909 12641 17552 28974

of shortest paths stored 6021 8270 9735 12549 17388 28873

Table 7: Average total number of subproblems solved by HY for K = 1000 on the Square-n class

NY-d NY-t

YDI 0.01510 0.06438

KIM 4.09345 2.26890

NY-d NY-t

YDI 4.83838 22.84906

KIM 183.52124 110.13991

NY-d NY-t

YDI 11162 109413

KIM 4426 3643

(a) p1 time (b) Total time (c) Total # of paths computed

Table 8: Average results with K = 10 on the USA-road classes

Besides the fact that KIM had a clear advantage over YDI in terms of memory requirements, expressed by
the number of candidate loopless paths it generates – table 8.(c) –, that performance could only be achieved
by means of solving problems harder than the point-to-point shortest path problem, the single-source shortest
path problem, and using a demanding structure to keep the network conditions information. As table 8 and
figure 9 show, this resulted in running times much worse than those presented by YDI.

As the networks in this family have a high number of nodes only the code HY and some of the smallest
networks were considered for this set of tests. Table 9 and figure 10 summarise the average results attained
when ranking K = 100 loopless paths on those networks for 50 source-destination pairs of nodes.

NY BAY COL FLA

d 2.75922 4.47386 8.96694 10.09979

t 1.04658 3.78218 12.27720 32.33331

NY BAY COL FLA

d 28.29541 93.10358 472.97441 301.72003

t 38.52300 151.06403 372.77004 675.13664

(a) p1 (b) Total

Table 9: Average CPU times (in seconds) for code HY with K = 100 on the USA-road classes

The instances that consider the arc distance as the cost were significantly harder to solve than those with
travel time costs, except for the benchmark USA-road-{d,t}.COL.gr, even when this was not the case for
computing only the shortest path. Besides the problems dimension HY was able to list 100 loopless paths in
approximately 2,5 minutes on a network with 321270 nodes.

4 Conclusions

The ranking of loopless paths by non-decreasing order of cost is being studied since 1971. The methods
proposed in the literature to solve it can be seen as deviation algorithms and those that strictly compute
loopless paths can be grouped into two classes: Yen’s algorithms (for general networks) and Katoh, Ibaraki
& Mine’s algorithm (for undirected networks).

Although Katoh et al.’s approach saves memory space, it was too slow in the tests that were performed,
when comparing to any of the Yen’s methods.

Many implementations of Yen’s algorithm can be made. We have focused our attention over two straight-
forward implementations, one using a label correcting algorithm to compute shortest paths and another using
a label setting algorithm, interrupted when the destination node is has a permanent label, instead, as well
as over a proposal by Perko, that intends to reduce the number of initializations along the algorithm, and a
proposal by Martins & Pascoal, that intends to reduce the number of point-to-point shortest path problems
that have to be solved. In the experiments ran the label setting version was faster than the label correcting
version, except for the smallest instances, yet they were both outperformed by the variants of Perko and
Martins & Pascoal. Perko’s method has shown excellent results for some of the instances, but very bad
results for others, while Martins & Pascoal’s seemed to be more robust.

15

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

K

S
ec

on
ds

USA−road−d, p
10

YDI
KIM

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

K

S
ec

on
ds

USA−road−t, p
10

YDI
KIM

Figure 9: Partial CPU times on the USA-road classes

10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

K

S
ec

on
ds

USA−road−d, p
1
,...,p

100

NY
BAY
COL
FLA

10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

K

S
ec

on
ds

USA−road−t, p
1
,...,p

100

NY
BAY
COL
FLA

Figure 10: Partial CPU times of code HY on the USA-road classes

A new method to solve this problem was introduced, that only finds loopless paths but combines Yen’s
algorithm and deviation algorithms for unconstrained paths ranking. For this set of test this new approach
has shown to be more efficient than any of the others. In the random instances provides with 215 nodes it
was able to rank 1000 loopless paths in approximately 5 seconds, and in the grid instances the same time
was about 3 seconds (in square grids) and 20 seconds (in long grids).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows : Theory, Algorithms and Applications.
Prentice Hall, Englewood Cliffs, NJ, 1993.

[2] B. V. Cherkassky, A. V. Goldberg, and T. Radzik. Shorthest paths algorithms: Theory and experimental
evaluation. Mathematical Programming, 73:129–196, 1996.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, MA, 2001.

[4] R. Dial, G. Glover, D. Karney, and D. Klingman. A computational analysis of alternative algorithms
and labelling techniques for finding shortest path trees. Networks, 9:215–348, 1979.

16

[5] E. Hadjiconstantinou and N. Christofides. An efficient implementation of an algorithm for finding K

shortest simple paths. Networks, 34(2):88–101, 1999.

[6] W. Hoffman and R. Pavley. A method for the solution of the N th best path problem. Journal of the

Association for Computing Machinery, 6(4):506–514, 1959.

[7] N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm for K shortest simple paths. Networks,
12:411–427, 1982.

[8] E. Q. V. Martins and M. M. B. Pascoal. A new implementation of Yen’s ranking loopless paths
algorithm. 4OR – Quarterly Journal of the Belgian, French and Italian Operations Research Societies,
1(2):121–134, 2003.

[9] E. Q. V. Martins, M. M. B. Pascoal, and J. L. E. Santos. Deviation algorithms for ranking short-
est paths. The International Journal of Foundations of Computer Science, 10(3):247–263, 1999.
(http://www.mat.uc.pt/∼marta/Publicacoes/deviation.ps.gz).

[10] A. Perko. Implementation of algorithms for K shortest loopless paths. Networks, 16:149–160, 1986.

[11] J. Y. Yen. Finding the K shortest loopless paths in a network. Management Science, 17:712–716, 1971.

