INTRODUCTION TO AI STRIPS PLANNING

.. and Applications to Video-games!
Course overview

- Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS
Course overview

- Lecture 1: Game-inspired competitions for AI research, AI decision making for non-player characters in games
- Lecture 2: STRIPS planning, state-space search
- Lecture 3: Planning Domain Definition Language (PDDL), using an award winning planner to solve Sokoban
- Lecture 4: Planning graphs, domain independent heuristics for STRIPS planning
- Lecture 5: Employing STRIPS planning in games: SimpleFPS, iThinkUnity3D, SmartWorkersRTS
- Lecture 6: Planning beyond STRIPS
SimpleFPS planning benchmark

- Focus on first-person shooter (FPS) games and the non-player characters (NPCs) that act against the human player.

- Focus on goal-oriented action planning (GOAP) for NPC behavior.
SimpleFPS planning benchmark

- Focus on first-person shooter (FPS) games and the non-player characters (NPCs) that act against the human player.

- Focus on goal-oriented action planning (GOAP) for NPC behavior.

- SimpleFPS is a first step towards evaluating how the existing academic approaches for planning would perform if directly applied in an FPS setting.
SimpleFPS planning benchmark

- Focus on first-person shooter (FPS) games and the non-player characters (NPCs) that act against the human player.

- Focus on goal-oriented action planning (GOAP) for NPC behavior.

- SimpleFPS is a first step towards evaluating how the existing academic approaches for planning would perform if directly applied in an FPS setting.
STRIPS Planning

- **Given:**
 - Initial State
 - Goal
 - Available actions

- **Find:**
 - A sequence of actions that satisfy the goal
 - E.g.: [Left, Down, Left, Up, ...]
Planning Domain Description Language

- Language for specifying STRIPS planning problems
- Formal syntax like a programming language

- Initial State
 (:init …)

- Goal
 (:goal …)

- Actions
 (:action name
 :parameters (?from ?to ?dir)
 :preconditions (…)
 :effects (…)
)
Planning Domain Description Language

- Language for specifying STRIPS planning problems
- Formal syntax like a programming language

- Initial State (:init ...)
- Goal (:goal ...)
- Actions (:action name
 :parameters (?from ?to ?dir)
 :preconditions (...)
 :effects (...)
)

- Literals like Lisp, e.g., bot-at(area1) (bot-at area1)
Planning Domain Description Language

- Language for specifying STRIPS planning problems
- Formal syntax like a programming language

- Predicates (:predicates ...)
- Actions (:action name
 :parameters (?from ?to ?dir)
 :preconditions (...)
 :effects (...)
)
- Objects (:objects ...)
- Initial State (:init ...)
- Goal (:goal ...)

Planning Domain
Planning Problem
Planning Domain Description Language

- SAT Plan
- TL Plan
- FF
- BlackBox
- SHOP2
- TALPlanner
- ...

Planning Domains in PDDL:
- Blocks world,
- Storage, Trucks, ...

Planning Problems in PDDL for these domains

Comparisons
Evaluation
Conclusions
Planning Domain Description Language

- SAT Plan
- TL Plan
- FF
- BlackBox
- SHOP2
- TALPlanner
- ...

Planning Domains in PDDL:
- SimpleFPS Domain

Planning Problems in PDDL for SimpleFPS domain

Comparisons Evaluation Conclusions
Motivation for SimpleFPS

- Planning in academia: extensively tested

- Planning in FPS video games: not extensively tested

- SimpleFPS: A PDDL domain for evaluating academic planning techniques for NPCs in First-Person Shooters
Motivation for SimpleFPS

- Planning in academia: extensively tested
 - Many PDDL planning domains and problems available
 - Many off-the-shelf PDDL planners available

- Planning in FPS video games: not extensively tested
 - A few success stories but not clear if the same works under different assumptions or what is the best approach

- SimpleFPS: A PDDL domain for evaluating academic planning techniques for NPCs in First-Person Shooters
SimpleFPS planning benchmark

- SimpleFPS_PDDL_Domain.txt
- SimpleFPS_PDDL_ProblemGenerator.c
SimpleFPS planning benchmark

- SimpleFPS_PDDL_Domain.txt:
 - Specifies the predicates that can be used to describe the initial state of the game-world and the goal condition for the NPC.
 - Specifies a list of available actions that the NPC can perform, along with their preconditions and effects in terms of the predicates of the domain.

- SimpleFPS_PDDL_ProblemGenerator.c:
 - A tool to generate problem instances, i.e., an initial state of the game-world and a goal for the NPC.
SimpleFPS planning benchmark

- Summer student project at the University of Athens
 - Michail Papakonstantinou

- AIIDE-2011 workshop paper
 - The SimpleFPS Planning Domain: A PDDL Benchmark for Proactive NPCs

- Code/datasets available online
 - http://code.google.com/p/simple-fps-pddl/
SimpleFPS domain
SimpleFPS domain

- Represent only very simple high-level features:
 - Game-world consists of interconnected areas, each of which has a number of points of interest (POIs).
 - A few types of items located at POIs (weapons, ammo, med-kits, keycards).
 - NPC can perform basic actions (move between areas or POIs, pick-up/use items, attack, take cover).
A SimpleFPS problem instance

(:init ...)

Diagram of a map layout.
A SimpleFPS problem instance

- (:init …)

- 6 areas, some of them connected through doors and corridors:
 - (area a1)
 - (area a2)
 - (area a3)
 - (area a4)
 - (area a5)
 - (area a6)
A SimpleFPS problem instance

- (:init ...)

- 6 areas, some of them connected through doors and corridors:
 - (poi door1 a1)
 - (waypoint door1)
 - (connected a1 a2 door1)
 - (closed door1)
 - (opens door1 keycard1)
A SimpleFPS problem instance

☐ (:init ...)

- For each area a number of POIs are listed along with their properties:
 - (poi door1 a2)
 - (poi c1 a2)
 - (poi c2 a2)
 - (connected a2 a1 door1)
 - (cover-point c1)
 - (cover-point c2)
A SimpleFPS problem instance

☐ (:init ...)

- For each area a number of POIs are listed along with their properties:
 - (poi g1 a5)
 - (poi amm1 a5)
 - (gun g1)
 - (unloaded g1)
 - (ammo amm1 g1)
A SimpleFPS problem instance

- (:init ...)

For each area a number of POIs are listed along with their properties:
- knife
- med-kit
- control-box
- night-vision-gun
- ...
SimpleFPS domain: predicates

- **NPC-related**
 - (npc-at ?a)
 - (npc-close-to ?p)
 - (npc-covered)
 - (npc-uncovered)
 - (npc-holding ?o)
 - (npc-injured)
 - (npc-full-health)
 - (npc-aware)
 - (npc-unaware)

- **Area-related**
 - (area ?a)
 - (conn ?a1 ?a2 ?w)
 - (waypoint ?w)
 - (lighted ?area)
 - (dark ?area)
 - (poi ?p ?a)
 - (control-box ?p)
 - (cover-point ?p)
 - (item ?p)

- **Item-related**
 - (med-kit ?m)
 - (knife ?k)
 - (gun ?g)
 - (loaded ?g)
 - (unloaded ?g)
 - (ammo ?i ?g)
 - (night-vision ?g)
SimpleFPS domain: actions

Available NPC actions:
- move-to-area
- move-to-poi
- pick-up-item
- use-item
- take-cover
- un-cover

(: action ...)
SimpleFPS domain: move-to-point

(:action move-to-point
 :parameters (?area ?point)
 :precondition (and
 (npc-at ?area)
 (point-of-interest ?point ?area)
)
 :effect (and
 (npc-close-to ?point)
)
)
SimpleFPS domain: reload

(:action reload
 :parameters (?gun ?item)
 :precondition (and
 (npc-holding ?gun) (gun ?gun) (unloaded ?gun)
 (npc-holding ?item) (ammo ?item ?gun)
)
 :effect (and
 (not (unloaded ?gun))
 (loaded ?gun)
 (not (npc-holding ?item))
)
)
The SimpleFPS domain: actions

- Location-related:
 - moving-to-patrol
 - moving-to-take-position
 - move-away-from-point
 - move-to-point
 - move-to-point-from-point
 - make-accessible
 - place-in-inventory
 - turn-on-lights
 - turn-off-lights

- Attack-related:
 - make-contact
 - take-cover
 - uncover
 - use-med-kit
 - reload
 - attack-melee
 - attack-ranged
 - sneak-kill
A SimpleFPS problem instance

☐ (goal ...)

NPC goals:
- **g1**: (player-wounded)
- **g2**: (npc-covered)
- **g3**: (npc-full-health)
- **g4**: (and g1 g2 g3)
A SimpleFPS problem instance

- blackbox -o problems\sfps-domain.txt -f problems\sfps-problem1.txt

- 1. (move-to-point area3 door3-2)
- 2. (move-to-point area2 control-box2)
- 3. (turn-on-lights area2 control-box2)
- 4. (make-contact area2 p)
- 5. (move-to-point-from-point area2 knife2 control-box2)
- 6. (place-in-inventory area2 knife2)
- 7. (move-to-point area2 p)
- 8. (attack-melee area2 knife2 p)
- 9. (move-to-point-from-point area2 door2-0 p)
- 10. (moving-to-take-position area2 area0 door2-0)
- 11. (move-to-point area0 coverpoint1)
- 12. (take-cover area0 coverpoint1)
SimpleFPS problem generator
SimpleFPS problem generator

- Takes as input:
 - a number of areas,
 - c the probability that two areas are connected
 - n total number of points of interest
 - g the goal condition as one of g1, g2, g3, g4
 - l the number of instances to be generated

- Generates problem instances also using some rules:
 - Card-keys are added for locked doors
 - Ammo is added for guns that are unloaded
 - ...

SimpleFPS datasets

- Used the tool to generate 3 datasets:
 - 5 areas
 - 7 areas
 - 10 areas

- For each dataset we generated 10 instances with:
 - 10 items
 - ...
 - 100 items

- For each of the 4 goals:
 - g1, g2, g3, g4
Preliminary results with SimpleFPS

- Used two award-winning planners in these datasets:
 - BlackBox [Kauts, Selman 1999]
 - FastForward [Hoffman 2001]

- Run the planners on an average laptop
 - 1.4 GHz
 - 2 GB RAM
Preliminary results with SimpleFPS

- BlackBox, FastForward
 - Problems planners always return an answer within 1.5sec

BB: up to 5 areas/50 POIs

FF: up to 10 areas/70 POIs
Preliminary results with SimpleFPS

Different planning techniques make a lot of difference

BB: up to 5 areas/50 POIs

FF: up to 10 areas/70 POIs
Investigate further the available heuristics for progression planning using FastDownward as a framework.
Thorough results with SimpleFPS

- **Left:** best-first search with FF heuristic
- **Right:** weighted A* search with a combination of FF and landmark cut heuristic
- Average (total) run-time of planner
Thorough results with SimpleFPS

- **Left:** best-first search with FF heuristic
- **Right:** weighted A* search with a combination of FF and landmark cut heuristic
- **Average (total) run-time of planner**

![Graph showing average run-time of planner in seconds.](image)
Thorough results with SimpleFPS

- **Left:** best-first search with FF heuristic
- **Right:** weighted A* search with a combination of FF and landmark cut heuristic
- **Average run-time of planner doing search**

![Graphs showing search time vs number of primary points of interest](image)
Thorough results with SimpleFPS

- **Left:** best-first search with FF heuristic
- **Right:** weighted A* search with a combination of FF and landmark cut heuristic
- **Average run-time of planner doing search**

![Graphs showing average run-time of planner doing search for different numbers of primary points of interest.](image)
Thorough results with SimpleFPS

- Left: best-first search with FF heuristic
- Right: weighted A* search with a combination of FF and landmark cut heuristic
- Average plan length
Thorough results with SimpleFPS

- Left: best-first search with FF heuristic
- Right: weighted A* search with a combination of FF and landmark cut heuristic
- Average plan length

![Graph showing average plan length vs. number of primary points of interest for different scenarios and search methods.](image-url)
Some conclusions
Some conclusions

- Relatively small-sized problems wrt FPS games:
 - 10 areas/100 POIs

- The planner takes a lot of resources:
 - A lot of **time**: up to 1.4 sec to respond using 100% of the CPU resources of a laptop
 - A lot of **memory**: up to 6.5MB for each problem
Some conclusions

- Relatively small-sized problems wrt FPS games:
 - 10 areas/100 POIs

- The planner takes a lot of resources:
 - A lot of time: up to 1.4 sec to respond using 100% of the CPU resources of a laptop
 - A lot of memory: up to 6.5MB for each problem

- Different assumptions in academia and FPS games
Some conclusions

- There is a lot of room for improvement

- Take advantage of pre-processing
 - 6.5 MBs is too much for 1 character but how about 100?
 - Maintain the pre-processed state and update instead of re-computing it each time

- Guide the search method
 - The Golog family of languages
References

- Unifying SAT-Based and Graph-Based Planning. Henry Kautz, Bart Selman. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), 1999
