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Abstract

We describe an approach to reasoning agents which is based on a formal theory of actions and is
actually implemented on a mobile robot working in an office environment. From an epistemological
viewpoint, our proposal is originated by the correspondence between Dynamic Logics and Description
Logics. Specifically, we consider an epistemic extension of Description Logics to provide a new
theoretical framework for the representation of dynamic systems, where the agent’s reasoning is based
on its knowledge about the world. In this setting, we obtain a weaker notion of logical inference,
thus simplifying the reasoning task. From a practical viewpoint, we use a general purpose knowledge
representation system based on Description Logics and its associated reasoning tools, in order to
plan the actions of the mobile robot ‘Tino’, starting from the knowledge about the environment and
the action specification. In addition, we exploit the robot’s capabilities in order to integrate the
execution of the plan with reactive behaviours, thus enabling the agent to accomplish its tasks in
the real world.

Keywords: Reasoning about actions, cognitive robotics, knowledge representation, planning.

1 Introduction

Research on mobile robots has been developed within the field of Artificial Intelligence
by taking the view that a robot is an autonomous agent capable of achieving a variety
of goals in a dynamic real environment. Initially, the focus of this research has been
on the high-level representation of actions that the robot can perform. However, it
soon became clear that it is very difficult to build robots that exhibit the desired be-
haviour in real environments, simply on the basis of such a declarative representation.
Consequently, research split into two streams that developed rather independently of
each other. On the one hand, the basic functionalities of the robot, such as naviga-
tion or sensor interpretation, have been addressed; on the other hand, sophisticated
logic-based representations of the agent have been developed.

Recent work [8] has shown that a mobile robot can effectively be provided with
reactive capabilities. However, a mobile robot needs not only the ability to promptly
react and adjust its behaviour based on the information acquired through its sensors,
but also to achieve high-level goals. Therefore, it should also be able to reason about
the actions it can perform, find plans that allow it to achieve its goals and check
whether the execution of actions leads to the accomplishment of the goals. The
integration of reactive and planning capabilities has thus become a focus of research
in mobile robots and planning systems [41, 24, 47].
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We believe that this renewed effort to combine a logic-based view of the robot as
an intelligent agent with its reactive functionalities is essential to devise agents that
operate in a real world environment. In this paper we present a proposal for reconciling
a logic-based view of the agent with the implementation of real robots. Specifically,
we provide a framework for reasoning about actions and discuss its implementation,
through a knowledge-based system, on a robot with reactive capabilities. Thus, our
approach falls in the research stream of logic-based approaches for reasoning about
actions [32], however it has been developed as a balance between theoretical and
practical considerations.

Our proposal for reasoning about actions is originated by the correspondence be-
tween Description Logics and Propositional Dynamic Logics (PDLs) [44, 14]. PDLs,
that have been developed for reasoning about programs, have also been considered for
reasoning about actions [40, 15]. In this setting, a dynamic system is represented with-
out explicitly introducing in the language terms to denote states, as, for example in
the Situation Calculus. Formulae denote then properties of states, and actions denote
state transitions from one state to another. The dynamic system itself is described by
two kinds of axioms: ‘static axioms’, that account for background knowledge, and ‘dy-
namic axioms’, that describe how the state changes when an action is performed. As
in the deductive-planning tradition, a plan can be generated by finding a constructive
existence proof for a state where the desired goal is satisfied.

Description Logics (DLs) have been developed to support a rational design of knowl-
edge representation languages and their associated reasoning services, centred around
the notions of frame and hierarchical organization of knowledge, and constitute the
basis of several implemented tools [48]. The key idea underlying our proposal is to
exploit the features for knowledge representation and reasoning of DLs to obtain a
principled implementation of reasoning about actions in a setting derived from PDLs.
In particular, we rely on a DL enriched with an epistemic operator, originally intro-
duced to formally characterize several practical features of knowledge representation
systems based on DLs, not captured by a first-order setting [17]. Through the epis-
temic operator one can distinguish what is true in the world from what is known by
the agent, thus allowing both for a new characterization of the dynamic system and
for a weaker notion of inference.

Specifically, the work on computational aspects of reasoning in DLs (see [19] for a
survey) shows that the typical form of dynamic axioms leads to cyclic assertions in
the knowledge base and thus requires sophisticated reasoning techniques. Hence, we
have reinterpreted dynamic axioms by means of the so-called procedural rules. By
relying on the epistemic interpretation of these rules given in [18], we have defined
a setting which provides both an epistemic representation of dynamic axioms and a
weak form of reasoning. In this way, we obtain a simplified reasoning task and a
semantically justified approach to deductive planning.

We have built an implementation on top of the mobile robot Erratic [29], equipped
with wheels and sonars, which has the capability of integrating action execution and
reactive behaviour; we named our mobile robot ‘Tino’ [12]. In particular, we have
addressed the implementation of the theory of action and its integration within a real
robot architecture. We relied on Classic [7], a well-known, general-purpose knowl-
edge representation system based on DLs. An interesting feature of our approach
is that the reasoning tools provided by such a system can be effectively used in the
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implementation of the theoretical framework. With regard to the integration of the
planning component within the robot control software, we relied on the capabilities
offered by a built-in fuzzy controller [30] to combine the execution of high-level actions
with reactive behaviours that are needed in a real environment. It is worth empha-
sizing that this kind of integration has been of critical importance for achieving an
implementation that has been successfully tested in real office environments.

The paper is organized as follows. In Section 2, we present the basic Description
Logic formalism, and its epistemic extension. In Section 3 we describe the general
framework for the representation of dynamic systems, and in Section 4 we address
our specific proposal for representing and reasoning about actions. In Section 5, we
describe the implementation on the mobile robot ‘Tino’, which includes the imple-
mentation in Classic. We conclude the paper by discussing related work (Section 6)
and drawing some conclusions (Section 7).

2 Epistemic description logics

The technical background of our proposal is constituted by Description Logics (DLs)
enriched with an epistemic operator. We refer to [19] for a deeper introduction to
DLs.

DLs have been developed to represent the domain of interest in terms of concepts
(unary predicates) that characterize subsets of the objects, called individuals, in the
domain, and roles (binary predicates) over such domain. Concepts are described
by means of concept expressions that can be constructed through set operators plus
special constructors involving roles that link the individuals belonging to a concept
to those of other concepts. One can establish a hierarchy of concepts, based on set
containment (called subsumption).

We focus on a well-known DL, ALC, [45] and its epistemic extension, ALCK, ob-
tained by adding a modal operator interpreted in terms of minimal knowledge as in
[17, 18, 20]. Such an extension plays a critical role in our formalization of dynamic
systems.

The abstract syntax of ALC is defined as follows:

C,D ::= A | ⊥ | > | C u D | C tD | ¬C | ∃R.C | ∀R.C

where A denotes an atomic concept, C and D denote generic concepts and and R
denotes an atomic role.

We shall give the semantics of ALC using the so called Common Domain Assump-
tion (CDA): every interpretation is defined over the same, fixed, countable-infinite
domain of individuals ∆. CDA is not essential for ALC. It can be easily shown that
CDA does not affect the reasoning tasks considered in non-epistemic DLs. However,
CDA is required for ALCK.

An ALC-interpretation I as a function mapping each concept expression into a
subset of ∆ and each role expression into a subset of ∆×∆, such that:

AI ⊆ ∆
RI ⊆ ∆×∆
>I = ∆
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⊥I = ∅
(C u D)I = CI ∩DI

(C tD)I = CI ∪DI

(¬C)I = ∆ \ CI

∀R.CI = {d1 ∈ ∆ | ∀d2. (d1, d2) ∈ RI ⇒ d2 ∈ CI}
∃R.CI = {d1 ∈ ∆ | ∃d2. (d1, d2) ∈ RI ∧ d2 ∈ CI}.

DLs are typically used for representing the knowledge about a problem domain by
providing mechanisms for specifying relationships among concepts, and for providing
information about specific individuals. Accordingly, an ALC knowledge base Σ is
defined as a pair Σ = 〈T ,A〉, where T , called the TBox, is a finite set of inclusion
assertions of the form C v D, with C,D ∈ ALC, andA, called the ABox, is a finite set
of membership assertions of the form C(a) or R(a, b), where C,R ∈ ALC and a, b are
names of individuals. We assume that different names denote different individuals,
and with a slight abuse of notation, we do not distinguish between individuals and
their names.

The semantics of inclusion assertions is defined in terms of set inclusion: C v D
is satisfied in I iff CI ⊆ DI . Membership assertions are interpreted in terms of
set membership: C(a) is satisfied in I iff a ∈ CI and R(a, b) is satisfied in I iff
(a, b) ∈ RI . An interpretation I satisfies an ALC-knowledge base Σ iff every inclusion
and membership assertion of Σ is satisfied in I. A knowledge base Σ logically implies
an inclusion or membership assertion σ, written Σ |= σ, iff every interpretation I
satisfying Σ also satisfies σ.

The description logic ALCK is an extension of ALC with an epistemic operator
interpreted as (minimal) knowledge. More precisely the ALCK abstract syntax is as
follows:

C,D ::= A | > | ⊥ | C u D | C tD | ¬C | ∀Q.C | ∃Q.C | KC

Q ::= R | KR

where A denotes an atomic concept, C and D denote generic concepts, R denotes an
atomic role, and Q a generic role.

Non-epistemic concepts and roles are given the standard semantics of DLs, while
epistemic concepts and roles are interpreted on the class of Kripke structures where
worlds are ALC-interpretations, and all worlds are connected to each other, i.e. the
accessibility relation among ALC-interpretations is universal, thus Kripke structures
correspond to sets of ALC interpretations.

An ALCK-interpretation is defined as a pair (I,W), where W is a set of ALC-
interpretations over the domain ∆, and I is a distinguished interpretation belonging
to W (i.e. I ∈ W), such that:

AI,W ⊆ ∆
RI,W ⊆ ∆×∆
>I,W = ∆
⊥I,W = ∅
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(C u D)I,W = CI,W ∩DI,W

(C tD)I,W = CI,W ∪DI,W

(¬C)I,W = ∆ \ CI,W

(∀Q.C)I,W = {d1 ∈ ∆ | ∀d2. (d1, d2) ∈ QI,W ⇒ d2 ∈ CI,W}
(∃Q.C)I,W = {d1 ∈ ∆ | ∃d2. (d1, d2) ∈ QI,W ∧ d2 ∈ CI,W}

(KC)I,W =
⋂

J∈W
(CJ ,W)

(KR)I,W =
⋂

J∈W
(RJ ,W).

Intuitively, an individual d ∈ ∆ is an instance of a concept C iff d ∈ CI,W in the
particularALC-interpretation I ∈ W. An individual d ∈ ∆ is an instance of a concept
KC (i.e. d ∈ (KC)I,W) iff d ∈ CJ ,W for all possible ALC-interpretations J ∈ W .
The individual d ∈ (KC)I,W is said to be a known instance of a concept C; also, C
is said to be known for the individual d. Similarly, an individual d ∈ ∆ is an instance
of a concept ∃KR.> iff there is an individual d′ ∈ ∆ such that (d, d′) ∈ RJ ,W for all
possible J ∈ W. The individual d′ is said to be a known R-successor of d.

An ALCK knowledge base Σ is defined as a pair Σ = 〈T ,A〉, where the TBox T
is a finite set of inclusion assertions of the form C v D, with C,D ∈ ALCK, and
the ABox A is a finite set of membership assertions of the form C(a) or R(a, b),
with C,R ∈ ALCK and a, b names of individuals. C v D is satisfied in (I,W) iff
CI,W ⊆ DI,W . C(a) is satisfied in (I,W), iff a ∈ CI,W and R(a, b) is satisfied
in (I,W) iff (a, b) ∈ RI,W . A model for an ALCK-knowledge base Σ is a set of
ALC-interpretations W such that for each interpretation I ∈ W, every inclusion and
membership assertion of Σ is satisfied in the ALCK-interpretation (I,W).

Next, a preference semantics on universal Kripke structures is defined, which allows
one to select only those models where the knowledge is minimal. This is achieved
by maximizing in each epistemic model the number of possible worlds (i.e. ALC-
interpretations), which can also be explained as maximizing ignorance.

A preferred model W for Σ is a model for Σ such that W is a maximal set of ALC-
interpretations, in the sense that for each set W ′, if W ⊂ W ′ then W ′ is not a model
for Σ. Σ is satisfiable if there exists a preferred model for Σ, unsatisfiable otherwise.
Σ logically implies an (inclusion or membership) assertion σ, written Σ |= σ, iff σ is
satisfied in every preferred model for Σ.

By using the epistemic operator, it is possible to formalize inALCK several practical
features provided by implemented knowledge representation systems based on DLs
[18]. In particular, here we recall the so-called procedural rules (or simply rules).

Procedural rules take the form:
C 7→ D

(where C,D are ALC concepts). Roughly speaking, their meaning is ‘if an individual
is proved to be an instance of C, then conclude that it is also an instance of D’.
They can be viewed as a weak form of implication for which the contrapositive does
not hold. A procedural rule C 7→ D can be formalized in ALCK by the epistemic
assertion

KC v D
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A consistent knowledge base in which the epistemic operator occurs only in rules
of the above form has a unique preferred model; moreover, in such a case reasoning
can be accomplished by constructing a knowledge base, called first-order extension
[17, 18].

Finally, we address computational aspects of reasoning in DLs. Research in DLs
has shown that there is a trade-off between the set of concept forming constructs
allowed in a DL and the complexity of reasoning. More specifically, two aspects must
be carefully considered: the set of constructs allowed in the expressions; the form of
the inclusion assertions.

In particular, it has been shown [45] that logical implication inALC is an EXPTIME-
complete problem. The high complexity of logical implication in ALC is due to the
general form of inclusion assertions allowed. When considering general inclusion as-
sertions of the form C v D, reasoning becomes EXPTIME-hard even for a simple
language such as FL0 [36], a subset of ALC which contains only intersection u and
universal quantification ∀. Hence, restrictions on the form of inclusion assertions are
normally considered. In particular, a set of inclusion assertions is cyclic, when a chain
of individuals connected through roles can be built that connects a concept with itself.
Cycles are especially problematic from the computational point of view [37, 10, 11],
and typically are not allowed by implemented systems.

Logical implication of the form Σ |= C(a) is called instance checking. Logical Impli-
cation, and in particular instance checking in the case of ALC knowledge bases with
acyclic inclusion assertions is PSPACE-complete [19], and we get the same complexity
characterization even if we consider an empty knowledge base. Moreover, instance
checking remains PSPACE-complete, even when ALCK is used to express the query
concept C and procedural rules are allowed in the knowledge base [17].

3 Formalization of dynamic systems

Dynamic systems are typically modelled in terms of state transitions caused by ac-
tions. A state represents a possible state of affairs of the system. Each state is
associated with a set of properties which hold in the represented state of affairs. Ac-
tions cause state transitions, making the system evolve from the current state to the
next one.

In principle the behaviour of a system, i.e. all its possible evolutions, can be rep-
resented as a transition graph, where each node denotes a state and is labelled with
its associated properties, and each arc denotes a state transition and is labelled with
the action that causes the transition. Note, however, that complete knowledge of the
behaviour of the system is required to actually define its transition graph, while in
general one has only partial knowledge of such behaviour. In deductive planning this
knowledge is phrased in terms of axioms of some logic (e.g. the Situation Calculus
[39] or PDLs [40]). These axioms select a subset of all possible transition graphs.
The actual behaviour of the system is in fact captured by one of the selected graphs.
However, since typically one does not have enough knowledge to isolate the specific
graph capturing the actual behaviour, one has to focus on those properties that are
true in all the selected graphs, i.e. those properties that are logically implied by the
axioms.

Our general framework allows for specifying the behaviour of the dynamic system
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by means of three kinds of axioms: ‘static axioms’, action ‘precondition axioms’, and
‘effect axioms’.

• Static axioms specify properties which are true in every state and do not depend
on actions. In other words, static axioms are used for representing background
knowledge that is invariant with respect to the execution of actions.
• Precondition axioms specify circumstances under which it is possible to execute

an action. We assume that the designer of the system is able to specify sufficient
conditions for actions to be executed.
• Effect axioms specify (direct) effects of an action if executed under given circum-

stances, i.e. if executed in a state satisfying certain premisses. Obviously, through
static axioms additional effects can be inferred from those specified by effect ax-
ioms. Observe that in general we do not require the designer to specify all the
effects of an action.

The last two kinds of axioms are referred to as dynamic axioms, since both are used
to model dynamic aspects of the system.

In addition to these kinds of axioms, we assume that the designer specifies the
knowledge on the initial state, by providing an initial state description in terms of
the properties (not involving actions) that are associated with the initial state.

Actions are assumed to be deterministic, which means that in each transition graph,
given a state and an action, at most a single successor state is determined. However,
the properties associated with such successor state are generally different in different
transition graphs. We might say that actions are deterministic but their effects are
underdetermined in general.

To illustrate the framework, we first show how the various parts of the specification
of a dynamic system can be expressed in the Situation Calculus [39]. The Situa-
tion Calculus is a dialect of classical logic, in which two term sorts are distinguished:
situation-terms that are used to denote states1, and action-terms that denote actions.
Predicates that denote properties associated with states have a special situation ar-
gument and are called fluents.

Following the general framework above, the behaviour of the dynamic system can
be specified as follows:

• Static axioms can be expressed as

∀s.φ(s)

where φ(s) is a formula in which s is the unique situation argument of all fluents.
The axiom specifies that φ holds in every state.
• Precondition axioms can be expressed as

∀s.φ(s)⇒ Poss(r, s)

where Poss(r, s) is a special predicate that denotes whether it is possible to execute
the action r in s, and φ(s) is a formula in which s is the unique situation argument

1To avoid confusion, observe that what we call here states are essentially the semantic counterparts
of situation-terms. Instead sometimes in the Situation Calculus the word state is used to refer to an
interpretation of all atomic fluents in a situation.
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of all fluents and in which Poss does not occur. The axiom specifies that if the
precondition φ holds in s then r can be executed in s.
• Effect axioms can be expressed as

∀s.Poss(r, s) ∧ φ(s)⇒ ψ(do(r, s))

where do(r, s) is a situation that denotes the state resulting from executing r in
s, and φ(s), ψ(do(a, s)) are formulae in which s and do(r, s), respectively, are the
unique situation argument of all fluents and in which Poss does not occur. The
axiom specifies that in the state resulting from executing r in s, provided that r
is executable, ψ holds if the premiss φ is satisfied in s.

The initial state description can be expressed as a sentence of the form

φ(s0)

where s0 is a special situation that denotes the initial state, and φ(s0) is a formula in
which s0 is the unique situation argument of all fluents. The sentence specifies that
φ holds in the initial state.

In DLs states are represented by individuals, i.e. elements of the domain of interpre-
tation. Properties of states are represented by concepts. Actions, which are assumed
to be deterministic, are represented as functional roles, i.e. roles interpreted as func-
tions instead of relations. In fact, we distinguish two kinds of roles: static-roles, which
represent the usual notion of role in DLs and can be used for structuring properties of
states, and action-roles, which are functional roles that denote actions. When R is an
action-role, the construct ∃R.> expresses that there exists an execution of the action
R, i.e. R is possible in the current state. Instead, the construct ∀R.C expresses that
all executions of R lead to a state where C holds, i.e. since R is deterministic, if the
action R is executable then it leads to a state where C holds.

The behaviour of the dynamic system is specified in terms of (ALC) inclusion
assertions as follows:

• Static axioms
C v D

where C and D are concepts not involving action-roles. The assertion expresses
that every state satisfying the property denoted by C satisfies also the property
denoted by D.
• Precondition axioms

C v ∃R.>
where C is a concept representing a property of the current state that is sufficient
in order to execute the action R. C does not involve action-roles. Multiple axioms
per action are allowed.
• Effect axioms

C v ∀R.D

where D is a concept representing a property that holds in the state resulting
from executing R in a state satisfying the property C. C and D do not involve
action-roles. Multiple axioms per action are allowed.
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PDLs DLs
atomic proposition A atomic concept A
true tt top >
false ff bottom ⊥
conjunction C ∧D conjunction C u D
disjunction C ∨D disjunction C tD
negation ¬C negation ¬C
diamond (‘some executions...’) 〈r〉C existential quantification ∃R.C
box (‘all executions...’) [r]C universal quantification ∀R.C
valid implication (axiom) C ⇒ D inclusion assertion C v D

instance assertion C(a) | R(a1, a2)

Figure 1. Correspondence between DLs and PDLs

We denote with Γ the set of axioms in the specification. The specification apart from
Γ includes the initial state description, which is expressed by a concept S (not a set
of assertions).

Observe that a major difference between the formalization of dynamic systems in
the Situation Calculus and the one in DLs, is that in the former there is an explicit
denotation of states through situation-terms, while in the latter states are implicitly
described through their properties. In this respect, the DL-based formalization is
analogous to a modal formalization of dynamic systems.

Indeed, the formalization in DLs is strictly related to those based on Propositional
Dynamic Logics (PDLs) [40, 15]. PDLs [23] are modal logics for reasoning about
computer programs that have been studied extensively (see [31] for a survey). It has
been shown that there is a tight correspondence between DLs and PDLs [44, 14], which
allows for considering PDLs and DLs as syntactic variants of each other. Figure 1
shows how the constructs of PDLs can be translated into constructs of DLs and vice
versa. In view of this correspondence, the DL-based formalization considered above
can be seen as a variant of the one proposed in [40]. The only difference is that in
[40] precondition axioms were not considered, forcing each action R to be executable
in every state.

The kind of reasoning we are interested in can be phrased in the DL-based formal-
ization as a logical implication of the form

Γ |= S v D, (3.1)

which expresses that, given a specification of the behaviour of the system Γ, and an
initial state described by S, it follows that the initial state also satisfies the property
denoted by D, possibly involving the execution of actions.

Specifically, in deductive planning one is interested in answering the following ques-
tion: ‘Is there a sequence of actions that, starting from an initial state, leads to a
state where a given property (the goal) holds?’. Under the assumption of deterministic
actions, this is captured by the following logical implication:

Γ |= S v PLAN FOR G (3.2)

where PLAN FOR G stands for any concept of the form ∃R1.∃R2. . . .∃Rn.G (with
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n ≥ 0 and Ri any action), and expresses the existence of a finite sequence of actions
leading to a state where the goal G is satisfied. Formally, PLAN FOR G can be
defined inductively as the concept PS such that: G v PS ; if C v PS , then ∃R.C v PS ,
for every action role R.2 From a constructive proof of the above logical implication
one can extract an actual sequence of actions (a plan) that leads to the goal.

Observe that in this setting one may have very sparse knowledge about the system
— say a few laws (axioms) one knows the system obeys — and yet be able to make
several non-trivial inferences. Unfortunately, this generality leads to a high computa-
tional cost, as shown by the following proposition, where by propositional concept we
refer to those concept expressions that are formed excluding quantifications on roles.

Proposition 3.1
Consider a specification Γ of a dynamic system having the following characteristics:

• Static axioms of the form C v D, with C and D propositional.

• Precondition axioms of the form C v ∃R.>, with C propositional.

• Effect axioms of the form C v ∀R.D, with C,D propositional.

• Initial state description constituted by a concept S which is propositional.

Deciding logical implications Γ |= S v D, with D propositional, is an EXPTIME-hard
problem.

The proposition is an easy consequence of a complexity result in [11]: reasoning with
primitive inclusion assertions, i.e. inclusion assertions of the form A v C with A
an atomic concept, in the DL ALU , obtained from ALC by restricting existential
qualification to the form ∃R.>, is EXPTIME-hard. In fact, the same complexity
bound holds if we restrict the class of specifications to those having precondition
axioms of the form > v ∃R.>, as in [40].

Note that in the proposition above static axioms are trivially acyclic, since they
are propositional. Instead, the cyclicity of dynamic axioms is unavoidable, otherwise
we could not relate the truth-value of a property in state resulting from executing an
action to that in the current state. For example we could not express that a property
C persists over an action R, i.e. C v ∀R.C.

Finally, observe that the framework presented here is quite standard both in Arti-
ficial Intelligence and in Computer Science. However, it does not deal directly with
well-known formalization problems studied in Artificial Intelligence [42]. In particu-
lar, the qualification problem — i.e. the problem of finding out the actual conditions
that must be true to execute an action — does not arise since the designer is re-
quired to specify sufficient conditions for the execution of an action. While the frame
problem — i.e. the problem of specifying what remains unchanged when an action is
executed — is dealt with by requiring the designer to specify explicitly what remains
unchanged by using frame axioms, that is effect axioms of the form C v ∀R.C. Note
that the designer is allowed to specify effects of actions partially. Furthermore, static
axioms combined with effect axioms can be used to specify ramifications, i.e. indirect
effects.

2We use ∃R.C as an abbreviation for ∃Ri.> u ∀Ri.C. Indeed, since actions are assumed to be
deterministic, the two concept expressions are equivalent.
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4 Reasoning about actions in epistemic DLs

In the framework described in the previous section, the dynamics of the system is
specified in terms of what is true in the world. Now, we modify it, obtaining a new
framework in which the dynamics is specified in terms of what the robot knows of the
world. The idea is that the robot achieves its conclusions based on its epistemic state
and not on the actual state of the world.

As we shall see, this change of viewpoint in the representation has two important
consequences:

• It simplifies reasoning, and in particular it simplifies the task of deducing plans.
• It makes deductive planning always constructive, i.e. the reachability of a state in

which the goal holds is deduced only if there exists a known sequence of actions
that leads to it.

Below we introduce the new representation framework and, subsequently, address
reasoning.

4.1 Representation

The behaviour of the agent is again described by means of both static axioms and
dynamic axioms, divided into precondition axioms and effect axioms. Static axioms
are inclusion assertions not involving action-roles, as before, and not involving cycles,
in order to avoid the difficulties of reasoning about them. Dynamic axioms have a
different form that makes use of the epistemic operator K (in the following C,D
denote ALC concepts):

• Precondition axioms have the form

KC v ∃KR.>, (4.1)

which is interpreted as: if a state (individual) x is an instance of C in all possible
interpretations, then there exists a state y, the same in all possible interpretations,
which is the (unique) KR-successor of x.
• Effect axioms have the following form

KC v ∀KR.KD (4.2)

that can be read as: if a state (individual) x is an instance of C in all possible
interpretations, then in every interpretation each KR-successor of x (in fact at
most one, being actions deterministic) is a known instance of D.

A special form of effect axioms considered above corresponds to frame axioms, i.e.
axioms expressing which properties do not change when certain actions are executed.
Indeed by writing

KC v ∀KR.KC

we express the fact that the property C is not affected by the execution of action R.
Also the initial state description is given in a different way. We denote by the

individual name init the initial state, and give the initial state description in terms
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of a membership assertion on init. In other words, the initial state description has
the form

S(init)

where S is a concept that expresses the known properties of the initial state, and init
is an individual name that denotes the initial state.

The above formalization differs from the one given in Section 3 in two major aspects.
First, we have introduced a mechanism to denote states independently of the inter-
pretation of the concepts, namely chains of any length of roles of the form KR, with
R an action-role, starting from init. In fact, init denotes an individual which in every
interpretation represents the initial state. Similarly, the KR1-successor of init is an
individual xinit;R1 which represents in every interpretation the KR1-successor of the
state represented by init. The KR2-successor of xinit;R1 is an individual xinit;R1 ;R2

which represents in every interpretation the KR2-successor of the state represented
by xinit;R1 . And so on for chains of any length of roles of the form KR, starting from
init. As observed, the above described mechanism is not available in non-epistemic
DLs as well as in PDLs, although it is provided by the Situation Calculus through
situation-terms.

Secondly, the possibility of executing an action, and the effects that are obtained
by executing that action, are given in terms of what is known about the current state.
In fact, the presence of KC, instead of C, in the left-hand side of both precondition
axioms and effect axioms, requires C to be known for the individual x representing
the current state, or more precisely requires C to be true for the state denoted by
the individual x in all interpretations, i.e. C is required to be valid for the individual
x. As mentioned in Section 2, this use of K is tightly connected with the realization
of procedural rules in epistemic DLs. Observe that, for every property C, either C
is valid for an individual or not, i.e. either C is known or it is not known in the
current state. Namely, the robot has complete knowledge on its epistemic state. Such
epistemic state in turn expresses the partial knowledge the robot has on the actual
current state.

Let us now look at the planning problem. Let Γ be the set of static axioms, pre-
condition axioms, and effect axioms, specifying the behaviour of the dynamic system.
Given an initial state init satisfying certain properties S, a plan exists for a specified
goal iff there exists a finite sequence of actions that, from the initial state init, leads
to a state satisfying the goal. This condition is expressed by a logical implication
similar to (3.2), namely:

〈Γ, {S(init)}〉 |= PLAN FOR G(init) (4.3)

where PLAN FOR G is the concept PS defined inductively as: KG v PS ; if C v PS ,
then ∃KRi.C v PS , for every action-role Ri. In other words, PLAN FOR G stands
for any concept expression of the form ∃KR1.∃KR2. . . . .∃KRn.KG in which n ≥ 0
and each Ri is an action-role, and it expresses the fact that from the initial state init
there exists a sequence of successors (the same in every interpretation) that terminates
in a state (the same in every interpretation) where G holds (in every interpretation).

Condition (4.3) holds iff for each preferred model W for Σ = 〈Γ, {S(init)}〉, there
exists a state x ∈ ∆ such that x ∈ GI,W for all I ∈ W . Indeed, due to the special
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form of the dynamic axioms, such a state exists iff it is linked to the initial state by a
chain of KRi, i.e. if there exists a sequence of successors (the same in every possible
interpretation) that terminates in x.

We next show, through a simple example, that the use of epistemic inclusion as-
sertions in the formalization of the dynamic system actually weakens the deductive
capabilities of the robot. Let us first focus on the non-epistemic framework. Let Γ be
the following specification of a dynamic system behaviour:

Precond. axioms:
C1 u C2 v ∃R1.>
C1 u ¬C2 v ∃R2.>

Effect axioms:
C1 v ∀R1.D
C1 v ∀R2.D

and the initial state description be C1. Suppose we want to know whether there exists
a plan for achieving D, i.e.:

Γ |= C1 v PLAN FOR D.

It is easy to see that the answer to this planning problem is yes, since Γ |= C1 v
∃R1.D t ∃R2.D.

Now let us consider the epistemic framework. The specification of the dynamic
system behaviour becomes Γ′:

Precond. axioms:
K(C1 u C2) v ∃KR1.>
K(C1 u ¬C2) v ∃KR2.>

Effect axioms:
KC1 v ∀KR1.KD
KC1 v ∀KR2.KD

and the initial state description: C1(init). The planning problem becomes:

〈Γ′, {C1(init)}〉 |= PLAN FOR D(init)

The answer to this planning problem is no, since the robot neither knows that R1 is
executable, nor that R2 is executable, hence it has no plan to reach D. The difference
is that in the actual state of the world either C2 is true or ¬C2 is true. However,
neither C2 nor ¬C2 is known to be true by the robot (neither of the two is valid),
hence the robot concludes that it cannot perform any action.

In fact, there is no known sequence of actions leading to the state satisfying the
goal, yet in the non-epistemic framework the answer to the planning problem is yes,
whereas it is no in the epistemic framework.

The example highlights the differences between the epistemic setting and the non-
epistemic one. On the one hand, there are cases in which in the non-epistemic setting
the answer to a planning problem is yes, i.e. the logical implication (3.2) holds, while in
the epistemic setting the answer is no, i.e. the logical implication (4.3) does not hold.
Conversely, it is easy to see that, if in the epistemic setting the logical implication
(4.3) holds, then the logical implication (3.2) holds also in the non-epistemic setting.
That is, reasoning in the epistemic framework is a sound and well-characterized ap-
proximation of the non-epistemic case. On the other hand, in the epistemic setting
only constructive proofs are taken into consideration, in the sense that the logical
implication (4.3) holds only if there exists a known sequence of actions leading to the
state satisfying the goal. That is, if (4.3) holds then we are always able to extract an
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actual plan. As we have seen above this is not always the case in the non-epistemic
setting. Hence we can conclude that the use of the epistemic operator in the formal-
ization of actions allows for a principled weakening of the deductive capabilities of the
robot.

4.2 Reasoning

Let us now turn our attention to the problem of computing the logical implica-
tion (4.3). It is worth noticing that in general the ALCK-knowledge base Σ =
〈Γ, {S(init)}〉 has many preferred models, which are distinguishable even up to the
renaming of states. Nevertheless, due to the special form of the epistemic inclusion
assertions corresponding to the dynamic axioms in Σ, we can build the so-called first-
order extension (FOE) of Σ [18], which consists of the knowledge base 〈ΓS , {S(init)}〉
augmented by a set of membership assertions which are consequences (up to the
renaming of states) of the epistemic inclusion assertions.

The FOE of Σ provides a unique characterization of the knowledge that is shared
by all the preferred models of Σ. In fact, by representing dynamic axioms by means
of epistemic inclusion assertions of the special form above, we recover the ability to
represent the behaviour of the system by means of a single graph, corresponding to
the FOE. Such a graph is built in the following way:

• Nodes correspond to individuals denoted by chains of KR of any length starting
from init and are labelled by the properties that are known for the corresponding
individual.
• There is an edge, labelled by R, from a node x to a node y, if y is an KR-successor

of x.

The FOE summarizes the common part of all transition graphs that, by our (partial)
knowledge about the dynamic system, are considered possible, thus providing a de-
scription of the actual transition graph which is partial, in the sense that: (i) certain
states and transitions may be missing; (ii) the properties of the states in the graph
may be only partially specified.

Again, let Γ = ΓS ∪ ΓP ∪ ΓE be the set of static axioms, precondition axioms,
and effect axioms, specifying the behaviour of the dynamic system, let S(init) be
the specification of the initial state init, and let Σ = 〈Γ, {S(init)}〉. The FOE of Σ,
written FOE(Σ), is computed by the algorithm shown in Figure 2, in which

POST (s,R, 〈ΓS, ABOX〉,ΓE) = {D | KC v ∀KR.KD ∈ ΓE∧〈ΓS , ABOX〉 |= C(s)}

denotes the set of properties representing the effects (according to the specification
ΓE) of the execution of the action R in the state s, and

CONCEPTS(〈ΓS , ABOX〉, s) = {D | 〈ΓS , ABOX〉 |= D(s)}

denotes the set of properties verified by the state s in Σ.
Informally, the algorithm, starting from the initial state init, iteratively proceeds

as follows. First, it finds an action R which can be executed in the current state, by
identifying in the set ΓP a precondition axiom for R whose left-hand side is logically
implied by the current knowledge base. Then, it propagates the effects of the action
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ALGORITHM FOE
INPUT: Σ = 〈ΓS ∪ ΓP ∪ ΓE , {(init)}〉
OUTPUT: FOE(Σ)
begin

STATES = {init};
ALL-STATES = {init};
ABOX = {S(init)};
repeat
s = choose(STATES);
for each action-role R do

if KC v ∃KR.> ∈ ΓP ∧ 〈ΓS , ABOX〉 |= C(s) then
begin

s′ = NEW state name;
ABOX′ =ABOX ∪ {R(s, s′)} ∪ {Di(s

′)|Di ∈ POST (s,R, 〈ΓS , ABOX〉,ΓE)};
if there exists a state s′′ ∈ ALL-STATES such that
CONCEPTS(〈ΓS, ABOX〉, s′′) = CONCEPTS(〈ΓS , ABOX

′〉, s′)
then ABOX = ABOX ∪ R(s, s′′)
else begin

ABOX = ABOX′;
STATES = STATES ∪{s′}
ALL-STATES = ALL-STATES ∪{s′}

end
end;

STATES = STATES −{s}
until STATES = ∅;
return 〈ΓS , ABOX〉

end;

Figure 2. Algorithm computing FOE(Σ)

R, which again is based on checking whether the left-hand side of each effect axiom
for R in the set ΓE is logically implied by the properties holding in the current state.
In this way, the set of properties corresponding to the effect of the execution of R
in the current state is computed. A new state is then generated, unless a state with
the same properties has already been created. This step is repeated until all actions
executable in the current state have been considered. Then, a new current state is
chosen among those previously created and the main iteration proceeds, ultimately
producing a sort of non-epistemic ‘completion’ of the knowledge base Σ.

The FOE is unique, that is, every order of extraction of the states from the set
STATES produces the same set of assertions, up to the renaming of states. Moreover,
the algorithm terminates, that is, the condition STATES = ∅ is eventually reached,
since the number of states generated is bounded to the number of different conjunc-
tions of concept expressions in the set E = {D|KC v ∀KR.KD ∈ ΓE}, i.e. 2n, where
n is the number of axioms in ΓE . Finally, the condition

CONCEPTS(〈ΓS , ABOX〉, l) = CONCEPTS(〈ΓS , ABOX
′〉, j)

can be checked by verifying whether for each concept C, obtained as a conjunction of
concept expressions in E , 〈ΓS , ABOX〉 |= C(l) iff 〈ΓS , ABOX

′〉 |= C(j).
We point out that, while the notion of minimization of the properties of states,
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realized through the propagation of effects (i.e. only the properties which are neces-
sarily implied are propagated), is also correctly captured by the minimal knowledge
semantics of ALCK, the minimization obtained in the FOE by always generating one
new successor state does not have a direct counterpart in the semantics: This is the
reason why Σ has multiple preferred models, whereas the FOE is unique.

The following property establishes that, with respect to the logical implication
problem (4.3), the first-order extension of Σ represents the information which must
hold in any preferred model for Σ. This property allows one to solve the planning
problem (4.3) by verifying whether there is an x in FOE(Σ) that satisfies the goal G.

Theorem 4.1
There exists a state x such that

FOE(Σ) |= G(x) (4.4)

if and only if, for each preferred model W for Σ, there exists a state x such that
x ∈ GI,W for all I ∈ W.

Proof. If-part. Suppose that for each preferred model W for Σ there exists a state
x such that x ∈ GI,W for all I ∈ W. Now, due to the preference semantics of ALCK,
it follows that there exists a preferred model for Σ which is isomorphic to the unique
preferred model of FOE(Σ). Hence, there exists a preferred model W ′ for Σ such
that for each state s in FOE(Σ) there exists a state s′ in W isomorphic to s, that is,
for every concept C, FOE(Σ) |= C(s) iff s′ ∈ CI,W . Therefore, the existence of such
a model W ′ implies the existence of a state y such that FOE(Σ) |= G(y).

Only-if-part. Assume there exists a state x such that FOE(Σ) |= G(x). Then,
there is a finite sequence of actions Ri1 , . . . , Rin (the plan) that generates x. Let x1

be the Ri1 -successor of init in FOE(Σ), and let W be any preferred model for Σ.
Now, the properties that init is known to verify in all worlds of W are at least the
properties stated in the initial situation. Consequently, the set of epistemic inclusion
assertions, corresponding to the dynamic axioms whose antecedent is satisfied by init
in FOE(Σ), implies the same set of properties on another state (say y1) that is the
same in each interpretation I of W . That is, y1 satisfies at least the same properties
satisfied by x1. Now, let x2 be the Ri2 -successor of x1. The same kind of reasoning
can be applied, thus showing that there must exist a state y2 in W satisfying in each
world at least the same properties verified by x2. By iteration we conclude that there
exists a state yn such that x ∈ GI,W for all I ∈ W.

As for the computational aspects of reasoning about actions in the epistemic frame-
work based onALCK, it turns out that, under the assumption of acyclic static axioms,
the planning problem is PSPACE-complete.

Theorem 4.2
Let Σ = 〈ΓS ∪ ΓP ∪ ΓE , {S(init)}〉, such that ΓS is an acyclic set of ALC inclusion
assertions. Then, the problem of establishing whether there exists a state x such that
FOE(Σ) |= G(x) is PSPACE-complete.

Proof. PSPACE-hardness follows from the fact that the subsumption problem for
acyclicALC TBoxes, which is PSPACE-complete [11], can be reduced (ΓP∪ΓE = ∅) to
the problem of establishing whether there exists a state x such that FOE(Σ) |= G(x).
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Membership in PSPACE is due to the fact that the maximum number of states
generated in FOE(Σ) is 2n (where n is the number of dynamic axioms), therefore,
if there exists a state x in FOE(Σ) such that G(x) holds, then such a state can be
generated through a sequence of actions whose length is less than or equal to 2n. This
property allows for the generation of all the states, one at a time, using a polynomial
amount of space.

Therefore, from Proposition 3.1 it follows that, under the assumption of acyclic
static axioms, the planning problem is easier (unless EXPTIME=PSPACE) in the
epistemic setting than in the non-epistemic one. An informal explanation of this
result may be given in the following way. In the epistemic framework we model
static axioms as acyclic inclusion assertions, and we model the dynamic axioms, for
which the acyclicity condition would be too restrictive, by using epistemic inclusion
assertions of a special form. Specifically, in a way similar to the formalization of
procedural rules, the presence of epistemic concept expressions of the form KC in the
left-hand side of such inclusion assertions inhibits the usage of dynamic axioms for
contrapositive reasoning, and this weakening allows for lowering the computational
cost of reasoning in the epistemic framework.

Notice that the algorithm for computing FOE(Σ) in Figure 2 uses exponential
space, because FOE(Σ) can be used to find plans for any goal, not only to know
whether there exists a plan. It is easy to modify the above algorithm in order to
answer to the plan existence problem using polynomial space only.

5 The mobile robot Tino

Our approach to reasoning about actions has been implemented on the Erratic base
[29]. The robot, named Tino, has been successfully tested on several real and simu-
lated office environments.

Tino is based on a two-level architecture, which combines a reactive control mech-
anism with a planning system. The idea of multi-level architecture dates back to the
robot Shakey [38], in which the planning system was STRIPS. However, the Erratic
base allows for an effective combination of both horizontal and vertical decomposition
[8]. In this way the system can react immediately in dynamic environments, while
different representations of the environment are used by different modules.

The reactive capabilities of the robot Tino are based on a fuzzy controller [41, 30],
that provides integrated routines for sonar sensor interpretation, map building, and
navigation. The control problem is decomposed into small units of control, called
(low-level) behaviours, that are distinguished in reactive ones, like avoiding obstacles,
and (low-level) goal-oriented ones, like following a corridor. A blending mechanism is
used to integrate reactive and goal-oriented behaviours, so that the robot can follow
a corridor while avoiding obstacles.

As each module has its own representation of information, the exchange of infor-
mation between the two layers is a critical issue. The communication between the
planning system and the reactive controller is realized by a monitor, which takes care
of the integration of planning and control, by both translating high-level actions into
goal-oriented behaviours, and scheduling the activation of these behaviours. Indeed,
high-level actions can be seen as goals to be achieved by the controller through the
activation of appropriate behaviours [2]. Moreover, the monitor checks the correct
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execution of the behaviours, and returns to the planner a possible plan failure.
Below we describe the basic elements of the implementation of the planning com-

ponent and of the plan execution component.

5.1 Plan generation

One of the motivations underlying our proposal for reasoning about actions is the
possibility of relying on a knowledge representation system based on DLs for the im-
plementation. In particular, we have chosen Classic [7], a well-known system based
on DLs, to take advantage of an efficient and reliable reasoning system. However,
the language for representing knowledge in Classic is less expressive than the DL
we have considered so far. So, we use a subset of the DL language corresponding
to some of the constructs available in Classic, that we write, for ease of notation,
using u for AND and ∀ for ALL. The concept expression ∃KR.> has been implemented
by defining a procedural hook in Classic, that we call KAPPA and abbreviate with
∃K. Furthermore, we make use of the built-in instance checking mechanism to check
the validity of a concept in a state, and of triggering of rules to propagate effects of
actions.

Static axioms are expressed either as inclusion assertions (≤̇) or as concept defini-
tions, written .= and interpreted as necessary and sufficient conditions (see for example
[9]). In this way we can write

A ≤̇ C A
.= C

to define the primitive concept A as a subset of C, or equivalent to C, respectively.
In both cases cycles are not allowed.

Dynamic axioms are represented as Classic rules, denoted with 7→. Observe that
they implement the epistemic sentences KC v D, hence the rule is fired only on
named individuals satisfying the antecedent of the rule. Rules representing action
precondition axioms and effect axioms are thus written respectively as

C 7→ ∃KR C 7→ ∀R.D

Notice that the epistemic inclusion assertion KC v ∀KR.KD is correctly imple-
mented in this setting by the Classic rule C 7→ ∀R.D, since in Classic rules are
only applied to individuals explicitly mentioned in the knowledge base.

When C is the same concept expression, we sometimes abbreviate C 7→ ∃KR and
C 7→ ∀R.D as C 7→ ∃KR u ∀R.D.

Finally, concept instance assertions are used to describe initial state properties.
Thus

C(init)

states that C is valid in the initial state.
The goal to be achieved is expressed by means of a concept describing the properties

that must hold in the final state, and the plan generation procedure tries to find a
plan, that is a sequence of actions (roles), that, starting from the initial state, leads
to a state in which the concept expressing the goal holds.

Let us further comment on the use of KAPPA for implementing K. The procedural
meaning of the KAPPA operator is given according to the notion of known individuals
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at the epistemic level, thus an individual x is instance of (KAPPA R) if and only if there
exists a named individual y such that (x, y) ∈ RI . In fact, if x is asserted to belong
to (KAPPA R) and there is no named R-successor of x, then a new named individual
is created and added to the knowledge base as R-successor of x. Subsequently, the
new individual can be used for firing rules.

The generation of plans can be obtained by slightly modifying the algorithm for
computing the FOE. Indeed, it is sufficient to compute only a portion of the FOE, by
terminating the computation as soon as a state satisfying the goal is generated. Then,
one can build the plan, namely a term representing a sequence of actions that connect
the initial state with the state in which the goal is satisfied. The implementation
relies on the following assumptions (directly derived from the FOE algorithm), that
are necessary for the termination of the plan generation procedure: (i) rules involving
KAPPA must be applied only when no other rule can be fired; this prevents incomplete
state generations, i.e. new states are generated only after the properties of existing
ones have been completely derived; (ii) when a new individual z is created and all the
rules able to add properties to it are fired, a search for an existing individual that is
equivalent to z (i.e. described by the same concepts) is done, and if such an individual
(say x) is found, z = x is imposed, so that individuals are not indefinitely generated.

It is worth noting that different activations of the plan generation procedure may
compute the same part of the FOE several times. Therefore, we have adapted the
algorithm to reuse the already computed portion of the FOE, until a plan execution
failure points out that the knowledge base needs to be updated. This modification
can lead to a significant reduction of the computation time. Furthermore, when the
construction of the entire FOE is feasible, a plan can be obtained in two steps. First,
one generates the entire FOE following the algorithm in Figure 2; then the plan is
searched for in the FOE. In this way, the first step can be seen as a pre-processing of
the knowledge base and it allows for faster plan generation.

The complexity of the plan generation procedure above is polynomial with respect
to the size of FOE(Σ), that is the number of new states (individuals) generated by
the FOE algorithm, and so, in general, exponential with respect to to the size of Σ.

We observe that, under the assumption that dynamic axioms are of the form C 7→
∃KR u ∀R.D and for each action R the precondition C in dynamic axioms involving
R are disjoint from each other, we can make use of the Classic construct FILLS
instead of KAPPA for writing such axioms. The FILLS construct, that we denote as
∃R.{a}, has the following semantics:

(∃R.{a})I = {x ∈ ∆ | (x, a) ∈ RI}

and can be intuitively interpreted as the set of individuals having a as R-successor.
Note that a new individual a is created, if it does not exist, and therefore it is a known
individual at the epistemic level. So dynamic axioms can be written as

C 7→ ∃R.{a} u ∀R.D

In this way, computing the FOE is done in polynomial time with respect to the
size of the knowledge base, because the number of individuals is at most linear in
the number of rules. Hence the plan generation task is done in polynomial time too.
However, the restriction introduced for using FILLS limits the expressiveness in the
representation of environments.
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CloseToDoor1

Room1

CloseToDoor2

Room2

Corridor 2

Corridor 1

Door1 Door2

Figure 3. A simple environment

Example 5.1
Given the map shown in Figure 3, referring to an office environment constituted by
rooms, doors and corridors, we can represent the environment and Tino’s capabilities
of acting in it through the following knowledge base:

Corridor1 ≤̇ Corridor

Corridor2 ≤̇ Corridor

Room1 ≤̇ Room

Room2 ≤̇ Room

CloseToDoor1 ≤̇ Corridor1

CloseToDoor2 ≤̇ Corridor1

Corridor1 7→ ∃KFollowC1ToD1u ∀FollowC1ToD1.CloseToDoor1
Corridor1 7→ ∃KFollowC1ToD2u ∀FollowC1ToD2.CloseToDoor2
Corridor1 7→ ∃KFollowC1ToC2u ∀FollowC1ToC2.Corridor2
CloseToDoor1 7→ ∃KEnterD1u ∀EnterD1.Room1
CloseToDoor2 7→ ∃KEnterD2u ∀EnterD2.Room2
Room1 7→ ∃KExitD1u ∀ExitD1.CloseToDoor1
Room2 7→ ∃KExitD2u ∀ExitD2.CloseToDoor2

Corridor1(init)

The FOE corresponding to the above knowledge base is given in Figure 4. Observe
that, since in this case the requirement for using FILLS is satisfied, we compute the
FOE in polynomial time.

In the above example, the concept CloseToDoor1 is defined as a specialization of
Corridor1, that is when the robot is close to the first door, it is also in the first
corridor. Now the dynamic axiom involving the ExitD1 action has just CloseToDoor1
as effect while in the FOE (see Figure 4) from state x1 (successor state with respect
to ExitD1), the actions FollowC1ToC2 and FollowC1ToD2 (whose precondition is
Corridor1) are allowed. In other words, static axioms can produce many edges of the
graph with a single dynamic axiom.

The ability to define a taxonomic representation of the environment not only pro-
vides for a more compact way of specifying the knowledge about the problem domain,
but also allows one to have a more flexible and easy-to-modify representation. In par-
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FollowC1ToD2

FollowC1ToD1

FollowC1ToC2
FollowC1ToC2

Figure 4. The FOE

Figure 5. Plan execution for reaching Room2

ticular, we have taken advantage of these features both in modelling different environ-
ments and in implementing a module that takes as input a topological representation
of the map and generates a Classic knowledge base.

5.2 Dynamic execution of plans

The dynamic execution of plans is achieved by a monitor, that activates the behaviours
associated with high-level actions, keeps track of the current state of the robot on the
FOE and checks the correct execution of these behaviours replying to the planner if
a plan fails.

Figure 5 shows the execution of a simple plan (FollowC1ToD2; EnterD2 ) to reach
Room2 in the environment described in Example 5.1. Notice the interaction of goal
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Figure 6. Plan execution for reaching any room

oriented and reactive behaviours when the robot has to avoid the unknown obstacle
while following the corridor.

Example 5.2
We can describe the fact that the robot can enter in a room only if it is close to an
open door by replacing the dynamic axioms involving Enter actions in Example 5.1
with

CloseToOpenDoor1 7→ ∃KEnterD1 u ∀EnterD1.Room1
CloseToOpenDoor2 7→ ∃KEnterD2 u ∀EnterD2.Room2

and by adding the following axioms:

CloseToOpenDoor1
.
= CloseToDoor1 u OpenDoor1

CloseToOpenDoor2
.
= CloseToDoor2 u OpenDoor2

OpenDoor1 7→ ∀FollowC1ToD1.OpenDoor1
OpenDoor1 7→ ∀FollowC1ToD2.OpenDoor1
. . .
OpenDoor2 7→ ∀FollowC1ToD1.OpenDoor2
. . .

OpenDoor1 u OpenDoor2 u Corridor1(init)

Notice the use of axioms denoting the persistence of properties through actions
(e.g. OpenDoor1 is not changed by executing action FollowC1ToD1). In this way
properties concerning the status of the doors are propagated through all the states in
the action graph, so, when the robot reaches the state CloseToDoor1, it can deduce
that CloseToOpenDoor1 is valid too, and it can enter the door.

The monitor is also responsible for plan failure management. When an action is
not successfully executed, the system can use information about possible failures to
update the knowledge base and generate a new plan.

For example, if the action EnterD1 fails, we can assume that the door 1 is closed,
so the system has to update the current state of the robot after the failure (i.e. it
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returns a new current state in which OpenDoor1 is not valid), and a new planning
task is performed. In Figure 6 the execution of a plan, whose goal is to enter in any
room (specified by the concept Room), is shown. Note that the robot fails to enter
the first door, and after a replanning task, the second one is successfully entered.

6 Related Work

Autonomous navigation for mobile robots has been extensively studied from many
different perspectives. A debate from an architectural viewpoint has been carried out
in recent years (deliberative planning versus reactivity), and many different planning
techniques and systems were proposed.

From the architectural point of view, in [8] a layered architecture for controlling
mobile robots is proposed. While previous approaches were mainly concerned with
automatic plan generation and relied on complete and correct knowledge about the
world, the focus of the layered architecture was in the ability to quickly react to
unexpected situations. Many reactive systems for controlling mobile robots have been
proposed [1, 22, 27, 46], in which the task of plan generation is either not addressed
or considered as the task of specifying reactions for each possible situation.

The integration of deliberative planning and reactive capabilities usually has been
addressed by defining different levels for planning and control. In many cases [26, 47,
41] world model and plan representation are shared for coordinating the subsystems.
Instead, in [24] a heterogeneous and asynchronous architecture is presented in order
to combine classical AI techniques with reactive control mechanisms. Our approach
can be considered as heterogeneous, since it separates the planning component from
the underlying control mechanisms. However, we maintain, through the monitor, a
strict correspondence between the representation of the world and the plan in the two
levels.

On the other hand, a significant application of high-level control of mobile robots
can be found in Shakey the robot [38], in which the STRIPS representation system
was used for planning, and in the robot programming language based on Situation
Calculus [32], where a plan is specified through a program. Our proposal, by relying
on Description Logics, provides for an expressive formalism intermediate between
propositional STRIPS and Situation Calculus. Moreover, such a formalism is actually
implemented on a real mobile robot through a knowledge representation tool, which
enables the automatic generation of plans.

Several studies propose DLs for the development of planning systems (among them
[16, 3, 28]). In these proposals the language of DLs is extended with specific con-
structs that allow actions to be represented as concepts. The planning system can
thus reason about plans, by exploiting subsumption in DLs. Our proposal takes a
different perspective, derived from the correspondence with PDLs, where actions are
represented as roles, and properties of states as concepts. In our case, plans are gen-
erated through a combination of the propagation mechanism for the procedural rules
and taxonomic reasoning for checking the static properties of states.

Finally, the ability of representing and reasoning about the epistemic state of
the agent is convenient to deal with conditional plans and sensing (or knowledge-
producing) actions [33]. Indeed, there are several logic-based approaches to reasoning
about actions which address this topic [34, 25, 35]. In particular, the possibility of
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expressing and reasoning about the epistemic state of the agent has been studied
in the framework of the Situation Calculus in [43], which shows the possibility of
representing a knowledge modality by using the language of the Situation Calculus.
In principle this allows for representing effect axioms in terms of procedural rules in
a way analogous to that shown in Section 4. However, the issue of implementation
and the computational aspects of the corresponding planning task have not yet been
addressed.

7 Conclusions

The goal of our work was to devise a principled realization of reasoning agents in the
realm of mobile robots. In the paper we have presented a formal setting for reason-
ing about actions and its implementation on the Erratic base, integrating reacting
behaviour with action planning and execution.

We believe that the results of our work are twofold. From the standpoint of the
representation of dynamic systems, the origin of our work is in the formal correspon-
dence between Propositional Dynamic Logics and Description Logics. This has led us
not only to a semantically justified implementation, but also to the adaptation of the
formal setting in new and interesting directions. In particular, we have shown that
the epistemic representation of actions simplifies the planning task and (under some
restrictions) allows for the implementation of the theoretical framework for reasoning
about actions in an efficient knowledge representation system (Classic).

From the standpoint of implementation, the choice of a knowledge representation
system, together with the associated methodology for representing the dynamic envi-
ronment and reasoning about actions, has led to a very flexible implementation of the
planning component, that can be easily adapted to new environments. To this end,
the possibility of structuring the representation of environments using the features of
a DL representation language plays a crucial role. Moreover, our implementation has
been successful in a real environment because of the underlying system architecture,
which provides a powerful and accessible set of functionalities. By exploiting such
functionalities we obtained an effective integration of the reasoning capabilities of the
agent.

The framework developed so far is mainly concerned with the position of the robot
and its moving abilities. We are currently working on several extensions of the robot
capabilities, and, consequently, of the framework for reasoning about actions, that
will enable Tino to address more complex scenarios.

First, it is possible in this framework to provide the robot with the ability to reason
about its reactive abilities, in order to plan different kinds of reactive behaviours in
different situations. For example, it could be useful to provide the robot with different
kinds of obstacle avoidance behaviours: the robot could activate at the deliberative
level the appropriate one, according to the kind of obstacle encountered.

Second, the notion of epistemic state of the agent can be exploited, since it can be
used to address several issues arising in complex dynamic domains. In particular, we
are currently focusing on the following aspects:

1. Frame problem. It turns out [20] that a slight extension of ALCK allows for the
representation of default rules, thus allowing for the formalization of the notion
of default persistence of knowledge, realized through the use of such rules. This
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property, together with the notion of default persistence of ignorance encoded in
the semantics of ALCK, allows, in principle, for a formalization of the common-
sense law of inertia, through a ‘small’ number of epistemic axioms (formalizing
default rules).

2. Sensing. The usage of the epistemic operator of ALCK can be exploited in our
framework for reasoning about actions, in order to formalize sensing (or knowledge-
producing) actions. Indeed, the possibility of representing the epistemic state of
the agent allows for a simple treatment of actions whose execution only changes
the knowledge of the agent without affecting the state of the world. The first
results in this direction are reported in [13].

3. Plan constraints. Our framework also allows in principle for addressing the prob-
lem of specifying temporally extended goals [6] and dynamic constraints on plans
[5], which have been shown effective for speeding up the planning process.

4. Multi-agents. The epistemic nature of our framework makes it feasible to address
multi-agent scenarios where an agent can reason on other agents’ knowledge [21].
In this respect, one can take advantage of the studies on multi-modal DLs [4].
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