Transition semantics: intro

Idea: describe the result of executing a single step of the Golog program.

e Given a Golog program § and a situation s compute the situation s’ and the
program ¢’ that remains to be executed obtained by executing a single
step of Jin s.

e Assert when a Golog program ¢ can be considered successfully terminated
in a situation s.

Transition semantics: intro

More formally:
e Define the relation , named Trans and denoted by “——"):

(57 S) —>(5/7 S/)
where ¢ is a program, s is the situation in which the program is executed, and s’

is the situation obtained by executing a single step of § and ¢’ is what remains
to be executed of § after such a single step.

e Define a predicate . named Final and denoted by “ v

(8,5)Y

where 4 is a program that can be considered (successfully) terminated in the
situation s.

Such a relation and predicate can be defined inductively in a standard way, using the
so called transition (structural) rules

Transition semantics: references

The general approach we follows is is the structural operational semantics approach[Plotkin81,
Nielson&Nielson99].

This single-step semantics is often call: transition semantics or computation seman-
tics.

Transition rules for Golog: deterministic constructs

Act :

Test :

Seq :

while :

(CL, 3) —)(TL’LZ, dO(a[S]y S)) if POSS(CL[S] 8)

true
(¢?78) ———>(’I’L’Ll,8) If ¢[8]
true
(61302, 9) ——(81: 2, 5) (1102, 8) —— (%) (5, v
(61,8) — (07 5) (62,8) ——(05; 5)
(if ¢ then o1else 62,5) —— (67, 5') f o[s] (if ¢ then d1else 62,5) ——(65,s') i [s]
(5178) —>(5/175’) (5278) —>(5/27S/)

(Whlle QS do 57 5) ———)(5/, while QZS do 57 S) if Qb[s]

(6,5) —(8',8)

Termination rules for Golog: deterministic constructs

Nil : (nil,s)Y
true

Seu - (61; 62, s)V

eq .

! (0r,)V A (82i)Y
, (if ¢ then drelse 6o, s)V . (if ¢ then d1else 62, s)Y .

. f f—
of (51 5)7 if [s] (5r.5)V if =[s]
' v ' v
while - (while ¢ do 6, s) o [s] (while ¢ do 4, s) it 6[s]
true (8,5)V

Transition rules: nondeterministic constructs

Nondetbranch : (01 | &2, s) (93,5") (01] 62, 5) — (85, 8)

(01,s) — (0%, s") (02,5) ——(05,5")

.0 ——(8'(t), s
Nondetchoice - (rz.0z),s) CAQILY (for any t)

(6(2),) —(&'(2),s")

(6*,8) ——(&'; 0%, 5")
(6,5) —— (&, 8")

Nondetiter :

Termination rules: nondeterministic constructs

61|96 v
Nondetbranch : (91 | 92, s)
(51,8)V V (82,8)V

) v

Nondetchoice : (mz. 6(x),s) (for some)
(5(¢), s)v
: (5%, 5)V

Nondetiter :

true

Structural rules

The structural rules have the following schema:

CONSEQUENT

if SIDE-CONDITION
ANTECEDENT

which is to be interpreted logically as:

V(ANTECEDENT A SIDE-CONDITION O CONSEQUENT)

where V(@ stands for the universal closure of all free variables occurring in @, and,
typically, ANTECEDENT, SIDE-CONDITION and CONSEQUENT share free variables.

Given a model of the SitCalc action theory, the structural rules define inductively a
relation, namely: the smallest relation satisfying the rules

Examples

Compute the following assuming actions are always possible:

e (a;b,Sqg) ——(nil; b,do(a, Sg)) ——(nil, do(b(do(a, Sp)))

o ((a]b),c,Sg) ——777

e ((a|b);c;, P?,Sg) ——777

e (a;(b|c),Sg) ——777

o ((a;b]a;c),Sg) ——777

where P true iff a is not performed yet.

Evaluation vs. transition semantics

How do we characterize a whole computation using single steps?

First we define the relation, named Trans*, denoted by ——™* by the
following rules:

(5a S)—>*(5a S)

true

Osteps :

5 * 5// "
nsteps : (9, 5) (07, s") (for some ¢/, s')
(0,8) ——(8',8") A (&', 8)——="(0",5")

Then it can be shown that:

(6,50) ———sp =

(6, 80)—>*(5f,80) AN (5f,8f)\/ for some 5f

10

Getting logical

Till now we have defined the relation (5, s) ——(d’, s’) and the predi-
cate (4, s)\/ In a single model of the SitCalc action theory of interest.

But what about if the action theory has incomplete information and
hence admits several models?

Idea: Define a logical predicates T'rans(4,s,d’,s’") and Final(3, s)
starting from the definitions of the relation (8, s) —— (&, '), and (6, s)V.

11

Definition of Do: intro

How: do we define a logical predicate Trans(4, s, §’, s’) starting from
the definition of the relation (4§,s) ——(&’,s')? and the predicate

(8,5)V.
e Rules correspond to logical conditions;

e The minimal predicate satisfying the rules is expressible in 2nd-
order logic by using the formulas of the following form (for T'rans,

similarly for Final):

vT{
logical formulas corresponding to the rules

that use the predicate variable 7T in place of the relation
} D T(s,d,5).

12

Definition of Trans

Trans(d,s,d8',s") = VT.[... D T(9,s,d,s")], where...stands for the conjunction of the universal
closure of the following implications:

Poss(a[s], s)

Pls]

T(4,s,d,s")

Final(vy,s) NT(6,s,0',5")
T(,s,0,5")

T(4,s,0',s")

T(62,s,d,s")

T(95,s,0',5")

T(5[]Z(2:%(m, 5,0',8")

T({ Env; 5p;_)[1;]}, s,0',8")

T(a, s, nil,do(als],s))
T(¢?,s,nil,s)
T(5;v,s,68;v,s")
T(~v;9,s,0',s")

TG | v,s,0,58)
T(v|9,s,8,5)
T(mv.d,s,0',s")

T(6*, s,8"; 6%, s")
T({Env;d},s,0',s")
T([Env: P(1)],s, 8, s")

u u uvuuuuuuuuyu

13

Definition of Final

Final(6,s) = VF.[... D F(4,s)], where ... stands for the conjunction of the universal closure
of the following implications:

True DO F(nil,s)
F(5,8) NF(v,s) D F(0;7,s)
F(,s) D F(|~,s)
F(5,s) D F(v|6,s)
F(62,s) D F(mwv.d,s)
True O F(6*,s)
F((Sgszﬂ@], s) DO F{Enwv;d},s)
F({Env;5p;[1;],s) > F([Env: P()],s)

14

Concurrency

ConGolog is an extension of Golog that incorporates a rich account of
concurrency:

e concurrent processes,
e priorities,
e high-level interrupts.

We model concurrent processes by interleaving : A concurrent ex-

ecution of two processes is one where the primitive actions in both
processes occur, interleaved in some fashion.

It is OK for a process to remain blocked for a while, the other pro-
cesses will continue and eventually unblock it.

15

Congolog

The ConGolog language is exactly like Golog except with the following
additional constructs:

If ¢ then 91 else do, synchronized conditional
while ¢ do 9, synchronized loop
(61 || 62), concurrent execution
(61) d2), concurrency with different priorities
sl concurrent iteration
<P — 0>, Interrupt.

The constructs if ¢ then §; else 4> and while ¢ do ¢ are the synchronized: testing
the condition ¢ does not involve a transition per se, the evaluation of the condition
and the first action of the branch chosen are executed as an atomic unit.

Similar to test-and-set atomic instructions used to build semaphores in concurrent
programming.

16

Conc :

PriorConc :

IterConc :

Interrupts :

Transition rules: concurrency

(01]| 02,) —— (8] || 62, 5") (61]| 02, 8) ——(d1 || 65, ")
(01,s) — (0%, s") (92,5) ——(05,s")

(01)) 92, 8) —— (9]) 62, 8") (01) 02, 8) ——(d1)) 65, 8")
(01,s) —— (0%, 8") (62,8) ——(05,8") N (61,8) —F—

(8!, 5) — (8" || 81, 8"
(6,5) —(&',5")

(<¢—0>,5) — (8 <9 —6>,5)

if p[s] A Interrups_running|s]
(5a S) ——%(6/7 S/)

17

Termination rules: concurrency

Conc :

PrioConc :

IterConc :

Interrupts :

(61 || 62, s)V

(01, 8)V A (82,8)Y

(61) 62, s)V

(01, 8)V A (62,8)Y

Y

true

(<¢p—6>,5)V

if —=Interrups_running[s]

true

18

ConGolog Transition Semantics (cont.)

Trans(nil, s, d,s') = False
Trans(a, s, d,s") =

Poss(als],s) ANd = nil A s’ = do(as], s)
Trans(¢?,s,6,s8') =op[s]Nd =nilAs' =s
Trans([d1;02],s,d,8") =

Final(61,s) AN Trans(d2,s,8,8') V

36".6 = (&';60) A Trans(d1,s,8’,s")
Trans([61 | §2],s,d,5") =

Trans(d1,s,6,s') V Trans(do,s,d,s’)
Trans(mzd,s,d,s') = Jx.Trans(d,s,d,s’)

In this semantics, T'rans and F'inal are predicates that take programs
as arguments. So need to introduce terms that denote programs (reify
programs). In the third axiom, ¢ is a term that denotes a formula, and
o[s] stands for Holds(¢, s), which is true iff the formula denoted by ¢
IS true in s. Detalls are in [DLLOO].

19

ConGolog Transition Semantics (cont.)

Trans(6*,s,d,s") =38.6 = (§';6%) A Trans(d,s,d’,s")
Trans(if ¢ then 61 else §-,s,5,s") =
d(s) AN Trans(d1,s,0,8) V =op(s) A Trans(do,s,d,s’)
Trans(while ¢ do §,s,d8’,s") = o(s) A
36”. 6’ = (6”; while ¢ do §) A Trans(d,s, 8", s")
Trans([61 || 62],s,6,s") = 3¢'.
6 = (6" || 62) A Trans(61,s,8,8")V
6 = (81]| 8") ATrans(ds,s,d',s")
Trans([61) 2], s,6,s") = 3.
6 = (8") 62) ATrans(61,s,8',s8") VvV
6 = (81) &) ANTrans(ds,s,d,s) A
—36", 8" Trans(d1,s,8”,s")
Trans(sl, s, 8, s") =
36".8' = (8" || 1) A Trans(8,s, 8", s")

20

ConGolog Transition Semantics (cont.)

Final(nil,s) = True
Final(a, s) = False
Final(¢?,s) = False
Final([d1;62],s) = Final(d1,s) N Final(do, s)
Final([01 | 62],8) = Final(d1,s) V Final(dp, s)
Final(wx d,s) = Jz.Final(d, s)
Final(6*,s) = True
Final(if ¢ then 67 else §5,s) =

d(s) A Final(d1,s) V —¢p(s) A Final(do, s)
Final(while ¢ do é,s) =

d(s) A Final(d,s) V —¢(s)
Final([01 || 02],8) = Final(d1,s) N\ Final(do, s)
Final([61) d2],s) = Final(d1,s) A Final(dp, s)
Final(8l, s) = True

21

ConGolog Transition Semantics (cont.)

Then, define relation Do(4, s, s’) meaning that process &, when exe-
cuted starting in situation s, has s’ as a legal terminating situation:

Do(4,s,s) det 38" Trans*(6,s,6',s") A Final(8', s")

where Trans* is the transitive closure of Trans. That is, Do(4, s, s')
holds iff the starting configuration (4§, s) can evolve into a configuration
(6, s') by doing a finite number of transitions and Final(3, s').

d
Trans*(4,s,d,s) tef VT'[...DT(6,s,6,s)]
where the ellipsis stands for:
Vs. T(d,s,0,8) A
Vs, o' s', 8", s". T(5,s,8,8) A
Trans(d',s', 6", 8" D T(6,s,5",s").

22

Induction principles
From such definitions, natural “induction principles” emerge:

These are principles saying that to prove that a property P holds for
Instances of Trans and Final, it suffices to prove that the property P
IS closed under the assertions in the definition of T'rans and Final,
l.e.:

Prrans(P,01,51,02,50) = P(61,51,02,52)
Prina(P,61,51) = P(61,51)

Theorem: The following sentences are consequences of the second-order definitions of T'rans and
Final respectively:

VP. [V51, S1, 52, So. CDTmnS(P, 51, S1, 52, 82) = P(51, S1, 52, 82)] D)
vé,s,8, s . Trans(d,s,8',s') D P(5,s,8,s)

VP.[Vd1,51. Prina (P, 61,51) = P(d1,51)] D
V6, s. Final(8,s,8',s") D P(6,s)

23

Proof

We prove only the first sentence. The proof of the second sentence is analogous.

By definition we have:

V6,s,8, s . Trans(d,s,8,s) =
VP.[Vd1, 51,62, 52. Prrans(P, 61, 51,02, 52) = P(01, 51,62, 52)]
) P(57875/78/)

By considering the only-if part of the above equivalence, we get:

Vé,s,d’,s". Trans(4,s,d',s") A
VP. [Vél, S1, 52, S2. CDTmnS(P, 51, S1, 52, 82) = P(51, S1, (52, 82)]
D P(4,s,8,5)

So moving the quantifiers around we get:

VP.[Vé1, 51,02, 50. DPrrans (P, 01, 81, 02,52) = P(01,51,02,52)] A
vé,s,08',s". Trans(d,s,d',s")
2 P(5,8,5l,8/)

and hence the thesis.

24

Bisimulation
Bisimulation is a relation ~ satisfing the condition:
(61,51) ~ (62,52) D
(61, 51)Y = (62, 82)V A
V(d7,81).(61,81) —(d7,81) D
EI(5/27 3/2)-(527 $2) —>(5/27 3/2) A (5/17 5/1) ~ (5/27 812) A
V(85, 85).(62,82) ——(85,85) D
EI(5/17 5,1)-(517 1) —>(5/17 3/1) A (5,2? 3,2) ~ (5/17 3/1)

(61, s1) and (42, so) are bisimilar if there exists a bisimulation between the two.

Note: it can be shown that bisimilarity is an equivalence relation.

25

