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Abstract. Many recent works point out that there are several pos-
sibilities of assigning a meaning to a concept definition containing
some sort of recursion. In this paper, we argue that, instead of choos-
ing a single style of semantics, we achieve a better result by adopting
a formalism allowing for different semantics to coexist. In order to
demonstrate the feasibility of our proposal, we present a knowledge
representation language with the above characteristics. The language
is a powerful concept language where, besides the usual constructs
for conjunction, disjunction, negation, and quantifiers, both qualified
number restrictions, and recursive definitions are allowed. Notably,
these features make our formalism one of the most powerful concept
languages proposed in literature, in which the usual frame-based de-
scriptions can be combinedwith definitions of data structures such as
lists, directed acyclic graphs, streams, etc. We show that reasoning in
our language is decidable, andwe characterize its computational com-
plexity by resorting to a correspondencewith the modal mu-calculus
interpreted over deterministic structures.

1 INTRODUCTION
Many of the modern formalisms developed in Artificial Intelligence
for describing an application domain, allow for using the notions of
concept (sometime called classor frame) and relationship amongcon-
cepts. Indeed the notion of concept and that of link among concepts
are provided by all structured languages for knowledge representa-
tion (frame-based languages, semantic networks, terminological lan-
guages, etc.), by the type system of several programming languages,
and by the most recent database models, specially those based on the
object-oriented paradigm.
There are basically two ways of using and describing classes.

In the first one (prescriptive approach) the description formalism
allows for expressing several properties of a class, thus prescribing
constraints that instances of the class must satisfy. In the second
one (definitional approach) the formalism allows for providing the
definition of a class, i.e., a set of properties that precisely characterize
the instances of the class. While the prescriptive approach is quite
well understood and established, the definitional approach is still the
subject of an interesting debate, regarding both its nature and its
semantic foundation. In particular, it is well known that there are
various possibilities of assigning a meaning to a definition of a class,
in particular when it contains some sort of recursion ([1, 10, 3, 2]).
In this paper, we are concerned with the semantical problems re-

lated to the definitional approach, arguing that, instead of choosing a
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single style of semantics for the knowledge representation formalism,
we achieve a better result by adopting a more general formalism al-
lowing for different semantics to coexist. To demonstrate the feasibil-
ity of our proposal, we present a knowledge representation language
with the above characteristics, discuss its properties, and describe a
method for effectively reasoning with knowledge bases expressed in
the language. Our language belongs to the family of concept lan-
guages, that have been introduced with the aim of providing a logical
reconstruction of frame-based languages. It includes constructs for
conjunction, disjunction, negation, quantifiers, qualified number re-
strictions, and recursive definitions. Notably, these features make our
formalism one of the most powerful concept languages proposed in
literature, in which the usual frame-based descriptions can be com-
bined with definitions of data structures such as lists, directed acyclic
graphs, streams, etc.We show that reasoning in this logic is decidable,
and we precisely characterize the computational complexity of the
reasoning process by resorting to a correspondence with the modal
mu-calculus interpreted over deterministic structures. Several recent
papers (see, for example, [4, 5]) advocate the use of concept lan-
guages as a unifying framework for different types of database and
knowledge representation formalisms. Indeed, it is possible to show
that, based on both the constructors and the definitional facilities,
our language can capture several database models and programming
language type systems. Therefore, the results presented in this paper
are not merely confined to concept languages, but are applicable to
other representation formalisms.
The paper is organized as follows. In Section 2, we recall some

preliminary notions on concept languages andfixpoints. In Section 3,
we discuss the different semantics of concept definitions that have
been considered in the literature, and we argue for a formalism in
which the various semantics coexist. In Section 4, we introduce our
proposal, namely the language . In particular, we present the
syntax and the semantics of the language, and we derive decidability
and computational complexity of reasoning in the language.We con-
clude the paper discussing our results and comparing them to other
proposals in the literature.

2 PRELIMINARIES
In this section, we briefly recall some preliminary notions regarding
concept languages, and fixpoints. The reader is referred to [10] and
[6] for an introduction to the subjects.
In this paper, we concentrate our attention on a concept language,

called , in which concepts are composed inductively accord-
ing to the following abstract syntax:

::
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where is an atomic concept and is an atomic role. The semantics
of concepts is the usual one. An interpretation consists
of a domain , and an interpretation function mapping every
atomic concept to a subset of and every atomic role to a subset
of . The interpretation function is extended to complex
concepts of in such a way that the meaning of the construct
is preserved (e.g., ,

and ,
and ). A concept is satisfiable if there exists

an interpretation such that , unsatisfiable otherwise.
A knowledge base as a finite set (possibly empty) of inclusion

statements (or simply inclusion) of the form ˙ . A pair of
inclusions ˙ ˙ is often written as and
is called equivalence statement. An interpretation satisfies an in-
clusion ˙ if . An interpretation is a model of a
knowledge base if satisfies all inclusions in . A concept is
satisfiable in , if there exists a model of such that ,
unsatisfiable otherwise. A concept is subsumed by a concept in
, written , if for every model of , .
Next we turn to fixpoints. Consider the equation where
is an operator from 2 to 2 (2 denotes the set of all subsets of

a set ). The solutions of such an equation are called fixpoints of
the operator . In general an equation as the one above may have
either no solution, a finite number of solutions, or infinite number
of them. Among the various solutions, the smallest and the greatest
solutions (with respect to set-inclusion) have a prominent position,
if they exist. A fundamental result due to Tarski ([18]) guarantees
the existence and the uniqueness of both such solutions in case
is monotonic wrt set-inclusion ( ), where is monotonic wrt
whenever 1 2 implies 1 2 .

Theorem 1 (Tarski) Let be a set, and an operator from 2 to
2 that is monotonic wrt . Then, there is a unique least fixpoint of
given by , and a unique greatest fixpoint

of given by .

3 CONCEPT DEFINITIONS AS EQUATIONS
It is widely recognized that the notion of knowledge base as intro-
duced in Section 2 can be made more powerful if we allow some sort
of concept definitions to be expressed. Let us call definition statement
(or simply definition), statements of the form:

where is an atomic concept and is a concept expression in
( can not occur in the left-hand part of more then one

definitions). Intuitively, the above definition statement is intended
to provide a precise account of in terms of . When we specify
the semantics of definitions, we need to distinguish between two
different types of atomic concepts, namely, primitive concepts and
defined concepts: given a set of definitions, primitive concepts are
the atomic concepts that do not appear on the left of any definition
of , whereas defined concepts are those that have an associated
definition in . An interpretation satisfies a set of definitions if, for
each in the set, assigns the same subset of to the
defined concept and to concept .
We call recursive definition statements3 (or simply recursive defi-

nitions), definition statements of the form

3 Terminological cycles in[10].

where stands for a concept that has as a subconcept 4. From
a semantical point of view, a recursive definition is a
sort of equation specifying that, for any interpretation , the subset
of that can be tied to the concept must satisfy the equation

, i.e. must be one of its solutions. Notice that, in
general, either none, one, or several subsets of may exist which
are solutions of the above equation. For example, it is easy to see that
two interpretations that satisfy the statement and
that agree on both the concept and the role , may differ in the
extension assigned to the defined concept . Notice also that we can
associate to a definition statement an operator from subsets of to
subsets of , such that the solutions of the equation correspond to
the fixpoints of the operator. For example to the definition

we can associate, for any interpretation , the operator
and implies .

In the literature on concept languages, three semantics for recursive
definitions, have been proposed: the descriptive semantics, the least
fixpoint semantics, and the greatest fixpoint semantics ([10]). Let us
remind their behavior on some examples. According to the descriptive
semantics, a recursive definition is a constraint stating
that, for any satisfying the definition, has to be any solution of
the equation . That is, to it is assigned
the same meaning as to the equivalence statement . In
our example, states that the individuals in the
class are those in the class that are related by means of to
individuals in itself, and vice versa, where is no better specified.
In fact the descriptive semantics is not appropriate to properly define
recursive concepts. Instead, it is suitable to specify a set of necessary
and sufficient conditions that individuals must satisfy in order to be
instances of a concept. For example ([10]), we can express the fact
that humans are mammals having two parents that are humans, and,
on the converse, that mammals having two parents that are humans
are humans themselves, in terms of the equivalence statement

2 2

It is interesting to observe thatwemay state an analogousproperty for
horses 2 2
without implying anymutual relationship between and .
We will see later that this is not true if we use a fixpoint semantics
for defining these two concepts.
According to the least (greatest) fixpoint semantics, a definition

statement of the form specifies that, in any interpre-
tation , is to be interpreted as the smallest (greatest) solution, if
it exists, of . In other words, in order to consider an
interpretation adequate to give a meaning to , each
other interpretation , that agrees with on the primitive concepts
and roles, must assigns to a superset (subset) of . Let us consider
some examples, illustrating the differences in the two fixpoint seman-
tics. In our running example , the least fixpoint
semantics leads to identify with , (indeed the empty set satisfies
the statement, and it is obviously the smallest solution), while the
greatest fixpoint semantics interprets as the largest class satisfying
the definition, which can be proved to be equivalent to , where

denotes the reflexive and transitive closure of .
Although the least fixpoint semantics does not help in the above

example, it is particularly suitable for providing inductive definitions
of concepts. Consider the caseof a single sourcefinite directed acyclic
graph (DAG) defined as follows: an EMPTY-DAG is a DAG (base

4 A subconcept of a concept is any substring of (including itself) that
is a concept, according to the syntax rules.
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step); a NODE that has connections and all connections are DAGs,
is a DAG (inductive step); nothing else is a DAG.5 We can write a
natural definition statement modeling the class of DAGs, namely

as long as we interpret it according to the least fixpoint semantics.
Similarly, we canmodel the class of LISTs (defined inductively as: a
EMPTY-LIST is a LIST; a NODE that has exactly one successor that
is a LIST is a LIST; nothing else is a LIST) by

1

The greatest fixpoint semantics is well suited for defining classes
of individualswhose structure is non-well-founded. An example is the
class of STREAMs, modeling the well-known linear data structure
having a NODE as first element and such that the rest of the structure
is a STREAM itself. Note that streams, differently from lists, are
infinite sequences of nodes. A natural statement for the definition of
stream is

1

with the proviso that, for every , we need to associate to
the greatest solution of the corresponding equation. Notice however
that, if we interpret the definition statements

2 2
2 2

by the greatest fixpoint semantics, as well as with least fixpoint se-
mantics, we obtain a rather non-intuitive result: for any interpretation
satisfying the above definition statements, .
The above considerations show that the three semantics capture

different intuitions, and hence we may need all of them in the same
knowledge base in order to properly model different concepts. Our
proposal in this paper is exactly in the direction of reconciling the var-
ious semantics in the same knowledge base. This is pursued bymeans
of a language, called , that incorporates two constructors,

and (the symbols stand for concept
variables), denoting, respectively, the least fixpoint and the greatest
fixpoint of the operator associatedwith the definition ,
that is, for every satisfying the definition, the smallest solution and
the greatest solution of the equation .
In our approach, definition statementswill never appear in a knowl-

edge base. Instead, a knowledgebasewill be simply a set of inclusion
statements over concepts. For example, in order to spec-
ify the properties of the concepts of , , , and

, we can use the equivalence statements: 6

1
1

2 2
2 2

5 We assume that a leaf of a DAG is a NODE with all arcs leading to a special
node called EMPTY-DAG, as opposed to a NODE having no connection
at all. Indeed, in the latter case, the definition of would simplify to

, hiding the general form of inductive defini-
tions (i.e., base case and inductive case).

6 Notice that, if we add to this knowledge base the equivalence statement
2 2 , defining

the concept (sexual mammal), then it turns out that both and
are subsumed by .

The availability of least and greatest fixpoint constructors not only
allows different semantics to be used in the same knowledge base,
but also increases the expressive power of concept definitions. On
one hand, it makes it possible to model not only abstract classes,
but also inductively and co-inductively defined data structures, such
as dags, lists and streams. This is particularly important if we aim
at effectively integrating class-based representation formalisms and
programming systems (declarative or procedural), in order to make
these formalisms more useful in practice. On the other hand, we
have the possibility of embedding fixpoint constructors within each
other, thus going beyond the simple equational format by which we
motivated their introduction.7

4 ADDING FIXPOINTS TO
In this section, we describe syntax and semantics of the language

, providing a formal account of the meaning of the fixpoint
constructors, and we study the decidability and the computational
complexity of reasoning in knowledge bases.
We make use of notions of scope, bound and free occurrences of

variables, closed formulas, etc. The definitions of these notions are
the same as the analogues in first-order logic, treating and as
quantifiers. We also make use of the symbol as an abstraction for
either or .
Concepts in are formed inductively according to the

following abstract syntax:

::

where denotes an atomic concept, an atomic role, a vari-
able. We implicitly assume the restriction that every free occurrence
of variables is in the scope of an even number of negation, con-
sidering concepts in in the scope of one negation.
Not all the constructors introduced are independent, in particular

(where is the concept ob-
tained by substituting all free occurrences of with ).
As usual, an interpretation consists of a domain ,

and an interpretation function , which maps every atomic concept
to a subset of , and every atomic role to a subset of .
However, the presence of free variables does not allow us to extend
directly the interpretation function to every concept of the lan-
guage. For this reason we introduce valuations. A valuation on an
interpretation , is a mapping from variables to subsets of . Given
a valuation , we denoteby the valuation identical to except
for .

7 As an example consider the following: Among the inhabitants of the planet
“Plonk”, a disease called “foo” is quite common.Such a diseasemanifests in
two forms: a “visible” one and a “latent” (not visible) one, and it has a rather
intricate hereditary pattern. Individuals that have the visible form transmit
the visible form to at least one direct descendant (obviously, if there is any
direct descendant), these ill descendants in turn do the same, and so on, until
someone transmits the latent form of the disease. All direct descendants (if
any) of an individual that has the latent form inherit the visible form. The
pattern goes on like this, generation after generation, forever. Notice that,
along any chain of descendants, the visible form of the disease sooner or
latter is interrupted, because either an individual has no direct descendantor
an individual transmits to some descendant the latent form. The hereditary
pattern ( ) of the above disease can be defined as follows:

where denotes the visible form of the disease, while
denotes the latent form.
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Let be an interpretation and a valuation on . We assign
meaning to concepts of the language by associating to and an
extension function , mapping concepts to subsets of , defined as
follows:

and
implies

and
and

We remark that, in the last two cases is interpreted as
an operator from subsets of to subsets of . By the syntactic
restriction enforcedon variables, suchoperator is ensuredto bemono-
tonic wrt . Notice also that free variables appearing in a concept are
interpreted as atomic concepts, though by means of the valuation
instead of the interpretation directly.
A concept is satisfiable if there exists an interpretation and a

valuation on such that , unsatisfiable otherwise.
. A knowledge base is a finite set (possibly empty) of

inclusion statements ˙ where and are closed concepts
of . As before, we use equivalence statements of the form

as an abbreviation for ˙ ˙ . An interpretation
satisfies an inclusion statement ˙ if , where is

any valuation on (being and closed, and hence independent
from valuations). is a model of a knowledge base if satisfies
all inclusion statements in .8 We say that a concept is satisfiable
in if there exists a model of and a valuation on such
that , unsatisfiable otherwise. We say that a concept is
subsumed by a concept in , written , if for every
model of and every valuation on , .
We investigate the decidability and the complexity of both sub-

sumption and satisfiability of knowledge bases. Actually
these two reasoning services are tightly related. Indeed, it is easy to
check that a concept is subsumed by a concept in a knowledge
base iff the concept is unsatisfiable in , and that a concept
is unsatisfiable in iff is subsumedby in . Furthermore we

can prove the following result.

Theorem 2 Let 1 ˙ 1 ˙ be a
knowledge base, and and two concepts. Then is
subsumed by in (i.e., ) if and only if the
concept 1 is unsatisfiable,
where 1 are all the roles appearing in , and

1 1 .

That is, given a knowledge base , subsumption between
concepts in (thus alsounsatisfiability of a concept in ) is reducible
to unsatisfiability of a single concept.
In order to devise a (effective) method for checking a

concept for unsatisfiability, we exhibit a correspondence(similarly to
[14, 7]) between and a powerful logic of programs called
modal mu-calculus ([9, 16, 17]), which subsumesmost Propositional
Dynamic Logics, and most temporal logics for reactive/parallel pro-
cesses (for references, see [15]).

8 Notice that inclusions statements in are interpreted according to the
descriptive semantics.

The abstract syntax of modal mu-calculus is as follows:

::

where, is an atomic formula, is the generic element of a set of
labels , a variable, and every occurrence of any variable must
be in the scope of an even number of negation. We assign meaning
of a formula through a Kripke structure and a valuation. A Kripke
structure is a triple , where is a set of
states, each is a binary relation, and is a mapping from atomic
formulas to subsets of . A valuation on is a mapping from
variables to subsets of . To a structure and a valuation on ,
we associate an extension function defined inductively as follows:

, , , ,
, ,

, and
implies ,

,
. A formula is satisfiable if there exists a Kripke

structure and a valuation on such that .
In fact, we are interested in a variant of modal mu-calculus, called

deterministic modal mu-calculus, which has the same syntax as the
one above, but is interpreted only on deterministic Kripke structures,
that isKripke structures inwhich the relations are partial functions
([16]).9
We show that there is a function mapping concepts of

to deterministic modal mu-calculus formulae, such that is satis-
fiable if and only if is satisfiable. The function is defined
inductively. The mapping form , , , , , and

is simply , , ,
, , .

Themapping form and is based ona techniquedeveloped
in Propositional Dynamic Logic (PDL) to map non-deterministic
PDL formulae to deterministic PDL formulae preserving satisfiabil-
ity ([11, 16]), namely:

where is a new role. Finally, and are
mapped to the following formulae (we use the abbreviation
for , and for ):

where the number of nested formulae of the form
is , and

where the number of nested formulae of the form
is 1. These formulae express constraints on the number

of states satisfying along the chain . For example,
consider the concept 2 , where is an atomic concept,

2 that
means “everywhere along the chain there are at most two
states where holds”.
9 Note that deterministic modalmu-calculuscan be consideredas an extension
of the non-deterministic one, since it holds that every (non-deterministic)
modalmu-calculus formula is satisfiable if and only if a polynomially related
formula of deterministic modal mu-calculus is satisfiable.
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Theorem 3 Let be a concept, and the function defined
above. Then, is satisfiable if and only if is satisfiable.

It is known that satisfiability in deterministic modal mu-calculus is
an EXPTIME-complete problem ([16, 8, 12]). Since is clearly
polynomial in the size of (assuming numbers in coded in unary),
from the above theorem we can derive the decidability and the com-
putational complexity of reasoning with knowledge bases.

Corollary 4 Let be a knowledge base. Subsumption
between concepts in (and hence satisfiability of concepts in ) is
decidable in deterministic exponential time (tight bound).

It is worth noting that in spite of the big increase in expres-
sive power, the computational complexity of reasoning in
knowledge bases is the same as that of reasoning in knowledge
bases.

5 DISCUSSION
The language introduced in this paper features a novel combination of
constructors, namely, number restrictions and fixpoints, that makes it
one of themost powerful concept languagesproposedin the literature.
We already noticed that this combination allows for representing
not only abstract classes, but also several data structures extensively
used in application programs.We believe that this characteristic is an
important step towards a satisfactory integration of concept languages
with both traditional and declarative programming systems.
A more detailed analysis of reveals that the language

indeed provides powerful mechanisms for data structure modeling.
Consider a knowledge base containing the two equiv-
alence statements
1 , and

1 defining the concepts list of student and
list of persons. It is possible to show that, if
then . This property can
be the base to formulate a notion of parametric concept 10, i.e. con-
cepts denoted by expressions containing free variables, by which
both generic and polymorphic data structures can be represented. For
instance, the expression (named )
1 where is a formal parameter, denotes the
class of LISTs whose elements are left unspecified. This class can
be used in several ways in the knowledge base. For example, it can
be instantiated by binding the formal parameter to actual parameters,
thus getting, say, , which are
concepts inheriting the properties of .
Our proposal of allowing for fixpoint constructors explicitly in the

formalism is shared by a recent work independently carried out by
Schild [13]. The main goal of that work is to study both the expres-
sive power and the computational complexity of subsumption and
satisfiability for terminological knowledge bases expressed in
(no number restrictions), whose definitions can be mutually recur-
sive. To this end, a concept language is defined that corresponds to a
variant of the modal mu-calculus ([19]) in whichmutual fixpoints are
allowed but some restrictions on embeddingfixpoints are enforced. It
is well known that mutual fixpoints can be re-expressed by means of
embedded ones (see, for example, [6, 13]). As a consequence of this
observation it follows that our language is strictly more expressive
than the one analyzed in [13].

10 Note that, parametric concepts can be introduced also in simpler languages
not containing constructs for fixpoints.

We conclude noticing that although the proposed language is very
powerful, it lacks a construct for inverse roles which is needed for
example to correctly capture the notions of TREE, BINARY-TREE,
etc. Indeed, to define the concept of TREE (an EMPTY-TREE is
a TREE; a NODE that has at most one parent, some child, and all
children are TREEs, is a TREE; nothing else is a TREE) we can write

1 1

. Notice that the introduction of inverse roles doesnot pose
any difficulty from the semantical point of view; however, its impact
on the reasoning method needs to be investigated.
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