
Progression and Regression Using Sensors

Giuseppe De Giacomo
Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”
Via Salaria 113, 00198 Rome, Italy
degiacomo@dis.uniroma1.it

Hector Levesque
Department of Computer Science

University of Toronto
Toronto, Canada M5S 3H5

hector@cs.toronto.edu

Abstract

In this paper, we consider the projection task (deter-
mining what does or does not hold after performing
a sequence of actions) in a general setting where a
solution to the frame problem may or may not be
available, and where online information from sen-
sors may or may not be applicable. We formally
characterize the projection task for actions theories
of this sort, and show how a generalized form of re-
gression produces correct answers whenever it can
be used. We characterize conditions on action theo-
ries, sequences of actions, and sensing information
that are sufficient to guarantee that regression can
be used, and present a provably correct regression-
based procedure in Prolog for performing the task
under these conditions.

1 Introduction
One of the most fundamental tasks concerned with reasoning
about action and change is the projection task: determining
whether a fluent1 does or does not hold after performing a se-
quence of actions. In the usual formulation, we are given a
characterization of the initial state of the world and a specifi-
cation of some sort of what each action does. The projection
task requires us to determine the cumulative effects (and non-
effects) of sequences of actions.
Projection is clearly a prerequisite to planning: we cannot

figure out if a given goal is achieved by a sequence of actions
if we cannot determine what holds after doing the sequence.
Similarly, the high-level program execution task [6], which
is that of finding a sequence of actions constituting a legal
execution of a high-level program, also requires projection:
to execute a program like “while there is a block on the table,
pick up a block and put it away,” one needs to be able to
determine after various sequences of actions if there is still a
block on the table.
A perennial stumbling block in the specification of the pro-

jection task is the frame problem [4]: for each action, we
need to specify somehow not only what changes as the result
of performing the action, but the much larger number of flu-
ents unaffected by the action. One solution to this difficulty is

1By a fluent, we mean a property of the world that changes as the
result of performing actions.

make a STRIPS assumption [2]: what will be known about a
state of the world will be representable as a database of sim-
ple atomic facts, and we specify actions as operators on such
a database, adding or removing just what changes.
A much more expressive and declarative solution to the

frame problem is presented in [10]. There, the situation calcu-
lus is used to specify the effects of actions, and then a simple
syntactic procedure is provided for combining the effects for
each fluent into a so-called successor state axiom that logi-
cally entails not only the effect axioms, but all the frame ax-
ioms for that fluent as well.
However, this solution to the frame problemmakes a strong

completeness assumption: after specifying the (perhaps con-
ditional) effects of the given actions on fluents, and then al-
lowing for possible ramifications of these actions (e.g. [7]),
it is then assumed that a fluent changes only if it has been af-
fected in one of these ways. Thus, it is assumed that each flu-
ent can be regressed in the sense that whether or not it holds
after performing an action can be determined by considering
the action in question and what was true just before.
What is not allowed, in other words, are cases where the

value of a fluent does not depend in this way on the previ-
ous state. This can arise in at least two ways. First, a fluent
might change as the result of an action that is exogenous to
the system. If a robot opens a door in a building, then when
nobody else is around, it is justified in concluding that the
door remains open until the robot closes it. But in a building
with other occupants, doors will be opened and closed unpre-
dictably. Similarly, the robot may be able to determine that a
warning light is on simply because it was on in the previous
state and the robot is the only one who can turn it off; but it
may not be able to predict when the warning light goes on.
Secondly, the robot might have incomplete knowledge of the
fluent in question. For example, a robot normally would not
be able to infer the current temperature outdoors, since this
is the result of a large number of unknown events and prop-
erties. Even when a fluent is expected to stay relatively con-
stant, like the depth of water in a swimming pool, the robot
may not know what that value is.
In cases such as these, the only way we can expect a robot

to be able to perform the projection task is if it has some other
way of determining the current value of certain fluents in the
world. To this effect, we assume that not only can the robot
use regression, it can use a collection of onboard sensors. In
[5], sensing is modeled as an action performed by a robot that
returns a binary measurement. The robot then uses so-called



sensed fluent axioms to correlate the value returned with the
state of various fluents. However, in this account, no attempt
is made to be precise about the exact relation between sensing
and regression. Moreover, there is no possibility of saying
that only under certain conditions can regression be used, and
in others, sensing.
What we propose in this paper is this: a formal spec-

ification of a changing world that generalizes Reiter’s so-
lution to the frame problem (and hence STRIPS also) to
allow conditional successor state axioms, and generalizes
Levesque and others’ treatment of sensors (e.g. [1; 3; 9;
12]) to allow conditional sensing axioms. Our specification
will be sufficiently general that in some cases, there will sim-
ply not be enough information to perform the projection task
even with sensing. However, in many cases, we will be able
to do projection using a combination of sensing and regres-
sion. In addition to this specification, we propose a reason-
ing method for performing projection under these general cir-
cumstances which is guaranteed to be sound, and in many
cases of interest, complete. We provide a Prolog evaluation
procedure for the projection task and prove its soundness and
under suitable circumstances its completeness.

2 Basic action theories
Our account of action, sensing, and change is formulated in
the language of the situation calculus [4; 11]. We will not go
over the language here except to note the following compo-
nents: there is a special constant S� used to denote the ini-
tial situation, namely the one in which no actions have yet
occurred; there is a distinguished binary function symbol do
where do�a� s� denotes the successor situation to s resulting
from performing action a; relations whose truth values vary
from situation to situation, are called (relational) fluents, and
are denoted by predicate symbols taking a situation term as
their last argument; and there is a special predicate Poss�a� s�
used to state that action a is executable in situation s�
Within this language, we can formulate action theories that

describe how the world changes as the result of the available
actions. One such is a theory of the following form [10]:
� Axioms describing the initial situation S�, and axioms
not mentioning situations at all, which form together the
initial database.

� Action precondition axioms, one for each primitive ac-
tion a, characterizing Poss�a� s�.

� Successor state axioms, one for each fluent F , stating
under what conditions F ��x� do�a� s�� holds as function
of what holds in situation s� These take the place of the
so-called effect axioms, but also provide a solution to the
frame problem [10].

� Unique names axioms for the primitive actions.
� Some foundational, domain independent axioms.

For example, the successor state axiom2

Broken�x� do�a� s�� �
a � drop�x� � Fragile�x�

� �b �a � explode�b� � Bomb�b� � Near�x� b� s��
� a �� repair�x� � Broken�x� s�

2Here and below, formulas should be read as universally quanti-
fied from the outside.

states that an object x is broken after doing action a if a is
dropping it and x is fragile, a is exploding a bomb near it, or
it was already broken, and a is not the action of repairing it.
In [5], to characterize the result of sensing, it is assumed

that each primitive action can return a binary sensing result,
and that there is a special predicate SF �a� s� used to state that
action a returns value � in situation s. To relate this sensing
result to fluents, the following are added to basic action theo-
ries:

� Sensed fluent axioms, one for each primitive action a,
characterizing SF.

For example, the sensed fluent axiom

SF �readHeatGauge� s� � �n� RobotTemp�n� s� � n � ��

states that reading the heat gauge returns � iff the temperature
around the robot exceeds �� degrees.

3 Guarded action theories
In what follows we will be replacing successor state and
sensed fluent axioms by more general versions. To this effect,
instead of assuming that actions return a binary sensing value,
we assume that a robot has a number of onboard sensors that
provide sensing readings at any time. Thus, we drop SF from
the language of the situation calculus, and introduce instead
a finite number of sensing functions: unary functions whose
only argument is a situation. For example, thermometer�s�,
sonar�s�, depthGauge�s�, might all be real-valued sensing
functions.3

We then define a sensor-fluent formula to be a formula of
the language (without Poss, for simplicity) that uses at most
a single situation term, which is a variable, and that this term
only appears as the final argument of a fluent or sensor func-
tion. We write ���x� s� when � is a sensor-fluent formula with
free variables among the �x and s, and ���t� ts� for the formula
that results after the substitution of �x by the vector of terms �t
and s by the situation term ts. A sensor formula is a sensor-
fluent formula that mentions no fluents, and a fluent formula
is one that mentions no sensor functions.
We then define our generalized version of successor state

and sensed fluent axioms as follows:

A guarded successor state axiom (GSSA) is a for-
mula of the form

���x� a� s� � �F ��x� do�a� s�� � ���x� a� s��

and a guarded sensed fluent axiom (GSFA) is a for-
mula of the form

���x� s� � �F ��x� s� � 	��x� s��

where � is a sensor-fluent formula called the guard
of the axiom, F is a relational fluent, � is a fluent
formula, and 	 is a sensor formula.

An action theory can contain any number of GSSAs and GS-
FAs for each fluent. We can handle a universally applicable
successor state axiom like the one for Broken above by using
the guard True. We no longer have sensing actions, but we

3Syntactically, these look like functional fluents, so to avoid con-
fusion, we only deal with relational fluents in this paper.



can achieve much the same effect using a GSFA with guard
True. For example,

True � �RobotTemp�n� s� � thermometer�s� � n�

says that the on board thermometer always measures the tem-
perature around the robot.

3.1 Some examples
We now proceed to consider examples that cannot be repre-
sented in the basic action theories from Section 2.

1. The outdoor temperature is unpredictable from state to
state. However, when the robot is outdoors, its onboard
thermometer measures that temperature.

Outdoors�s� �
OutdoorTemp�n� s� � thermometer�s� � n

Note that when the guard is false, i.e. when the robot is
indoors, nothing can be concluded regarding the outdoor
temperature.

2. The indoor temperature is constant when the climate
control is active, and otherwise unpredictable. However,
when the robot is indoors, its onboard thermometermea-
sures that temperature:

Indoors�s� �
IndoorTemp�n� s� � thermometer�s� � n

ClimateControl�s� �
IndoorTemp�n� do�a� s�� � IndoorTemp�n� s�

Note that in this case, if the climate control remains ac-
tive, then a robot that goes first indoors and then out-
doors will still be able to infer the current indoor temper-
ature using both sensing and regressing. To our knowl-
edge, no other representation for reasoning about action
and change can accommodate this combination.

3. The distance between a (1-dimensional) robot and the
wall is affected only the moving actions. Also, the on-
board sonar correctly measures the distance to the wall,
but only when the reading is within a certain interval.

True �
WDist�n� do�a� s�� �

a � forward �WDist�n	 �� s�
� a � backward �WDist�n� �� s�
� a �� forward � a �� backward �WDist�n� s�


� 	 sonar�s� 	 
� �
WDist�n� s� � sonar�s� � n

In this case, the successor state axiom is universally ap-
plicable, meaning we can always regress all the way to
S� to determine the distance to the wall. However, if the
distance to the wall in S� is unknown, we would still not
know the current value, and so it much more useful to
be able to regress to a situation where the sonar reading
was within its operating range.

4. If the robot is alone in the building, the state of the door
is completely determined by the robot’s open and close
actions. Either way, any time the robot is in front of the

door, its onboard door sensor correctly determines the
state of the door.

Alone�s� �
DoorOpen�x� do�a� s�� �

a � open�x�
� a �� close�x� � DoorOpen�x� s�

InFrontOf�x� s� �
DoorOpen�x� s� � doorSensor�s� � �

One intriguing possibility offered by this example is that
on closing a door, and later coming back in front of the
door to find it open, a security guard robot would be able
to infer that 
Alone.

5. A warning light for an alarm can go on unpredictably.
Once it is on, however, it will stay on until the robot
turns it off. Also, the robot can determine the state of
the warning using its onboard light sensor, provided it is
looking at the light.

LookingAt�x� s� �
LightOn�x� s� � lightSensor�s� � �

LightOn�x� s� � a � turnoff�x� �
LightOn�x� do�a� s�� �

a �� turnoff�x� � LightOn�x� s�

In this case, we need a complex guard for the successor
state axiom, since we can only regress when the light
was on previously or when the action is to turn it off.

3.2 Histories and the projection task
We are now ready to define the projection task formally. Ob-
viously, to be able to determine if a fluent holds at some
point, it is no longer sufficient to know just the actions that
have occurred; we also need to know the readings of the sen-
sors along the way. Consequently, we define a history as a
sequence of the form � ���� � �A�� ���� � � � �An� ��n� where Ai

(� 	 i 	 n) is a ground action term and ��i � h�i�� � � � � �imi
(
 	 i 	 n) is a vector of values, with �ij understood as the
reading of the j-th sensor after the i-th action. If � is such
a history, we then recursively define a ground situation term
end ��� by end �� ����� � S� and end �� � �A� ���� � do�A� t�
where t � end ���. We also define a ground sensor formula
Sensed ��� as

Vn

i��

Vm

j�� hj�end ��i�� � �ij where �i is the
subhistory up to action i, � ���� � � � �Ai� ��i�, and hj is the j-th
sensor function. So end ��� is the situation that results from
doing the actions in � and Sensed ��� is the formula that states
that the sensors had the values specified by � 4. The projec-
tion task, then, is this:

Given an action theory � as above, a history �, and
a formula ��s� with a single free variable s, deter-
mine whether or not �� Sensed ��� j� ��end �����

4 Generalized regression
In principle, the projection task as formulated can be solved
using a general first-order theorem-prover. But the ineffec-
tiveness of this approach in an even simpler setting is ar-
guably what led many to abandon the situation calculus and

4Obviously interesting histories � have to satisfy certain legality
criteria such as consistency of � � Sensed ��� and conformance to
Poss.



take up STRIPS. Our goal here is to keep the logical frame-
work, but show that in common cases, projection can be re-
duced using a form of regression to reasoning about the initial
situation, as done in [11]. The reduction is tricky, however,
because of the interaction between the various GSFAs and
GSSAs, requiring us to solve (auxiliary) projection tasks at
each step.
What we propose is a generalized form of regression that

is a sensible compromise between syntactic transformations
and logical reasoning. Specifically we require the latter only
in evaluating the guards to decide which GSFAs and GSSAs
to apply (see Section 4.1 where regression is again used).
In the following we assume that � is an action theory as

above, � is a history, and ���x� s� and ��x� s� are sensor-fluent
formulas, 	��x� s� is a sensor formula, and ���x� s� is a fluent
formula. We use the notation �n� to mean the formula that
results from replacing every sensor function hj�s� in � by the
j-th component of the final sensor reading in �. We denote by
�� the part of� formed by the initial database and the unique
name axioms for actions as above.

Lemma 1 Let 	��x� s� be a sensor formula. Then for every
history � the following statement is valid:5

Sensed ��� � �x�	��x� end ���� � 	��x� s�n�

Proof: By induction on the structure of 	��x� s�.

To begin, we consider simplifications to formulas resulting
from sensing, using the guarded sensed fluent axioms.

Definition 4.1 ���x� s� simplifies to ��x� s� at � iff there are
fluents F���t�� s�� � � � Fk��tk� s� in ���x� s� with k � 
, and for
every � 	 i 	 k, there is a GSFA in �

�i��z� s� � �Fi��z� s� � 	i��z� s��

where � � Sensed ��� j� �i��ti� end ����, and ��x� s� is the
result of replacing each Fi��ti� s� in ���x� s� by 	i��ti� s�n�.

Definition 4.2 ���x� s� fully simplifies to ��x� s� at � iff
���x� s� simplifies to ���x� s� at � and if ���x� s� simplifies
to ����x� s� at � then ���x� s� � ����x� s�, and ��x� s� �
���x� s�n�

Lemma 2 If ���x� s� simplifies to ��x� s� at �, then

� � Sensed ��� j� �x����x� end ���� � ��x� end ����

Proof: By logical manipulation and Lemma 1.

Next, we consider simplifications involving reasoning
backwards using the guarded successor state axioms.

Definition 4.3 ���x� s� rolls back to ��x� s� from a non-
empty history � � �� � �A� ��� iff ���x� s� fully simplifies to
����x� s� at � and for every fluent F���t�� s�� � � � Fk��tk� s� in
����x� s� with k � 
, there is a GSSA in �

�i��z� a� s� � �Fi��z� do�a� s�� � �i��z� a� s��

where � � Sensed ��� j� �i��ti� A� end ����, and ��x� s�

is the result of replacing each Fi��ti� s� in ����x� s� by
�i��ti� A� s�.

5We assume a logic with equality.

Lemma 3 If ���x� s� rolls back to ��x� s� from a nonempty
history � � �� � �A� ���, then

� � Sensed ��� j� �x����x� end ���� � ��x� end �����

Proof: By logical manipulation and Lemma 2.

Putting both forms of simplification together we get:
Definition 4.4 ���x� s� regresses to ��x� s� from � iff either:
� � � � ���� and ���x� s� fully simplifies to ��x� s� at �.

� � � �� � �A� ��� and ���x� s� rolls back to ���x� s� from
�, and ���x� s� regresses to ��x� s� from ��.

Theorem 4 If ���x� s� regresses to ��x� s� from � then

� � Sensed ��� j� �x����x� end ���� � ��x� S��

Proof: By induction on the number of actions in � using
Lemma 2 and Lemma 3.

Observe that a formula ���x� s� can regress to zero, one,
or more formulas ��x� s� from �, depending on how many
entailed guards we can find for the fluents at each stage.
When a formula with a single free variable does regress,

then, as a consequence of Theorem 4, we get the following:
Corollary 5 Under plausible consistency conditions for � �
Sensed ���,6 if ��s� regresses to �s� from � then

� � Sensed ��� j� ��end ���� iff �� j� �S��

This provides a soundness result for regression: to perform
the projection task, it is sufficient to regress the formula, and
check the result against the initial database.
Unfortunately, regression in general cannot be complete.

To see why, suppose nothing is known about fluent F ; then a
formula like �F �s� � 
F �s�� will not regress even though it
will be entailed at any history. In Section 5, we show that for
certain histories (namely those where enough useful sensing
information is available), regression will be complete.
The other drawback of regression as defined is that we need

to evaluate guards. However, evaluating a guard is just a sub-
projection task, and so for certain “well structured” action
theories, we can again apply regression, as we now show.

4.1 Acyclic action theories and g-regression
We now restrict our interest to action theories � that are
acyclic, in the following sense. Let �, called dependency re-
lation, be a binary relations over fluents s.t. F � � F iff there
is a GSFA f���z� s� � �F ��z� s� � 	��z� s��g in � where F �

occurs in ���z� s�. An action theory � is acyclic iff the de-
pendency relation � is well-founded. When it is, we call the
level of a fluent F the maximal distance in of �-chains from
a bottom element of �.

Definition 4.5 Let � be acyclic. The sensor-fluent formula
���x� s� g-regresses to ��x� s� from � if ���x� s� regresses to
��x� s� and
� for every simplification step, where a GSFA in �

���z� s� � �F ��z� s� � 	��z� s��

is used to replace F ��t� s� by 	��t� s�n�� for some sub-
history ��, we have that the guard ���t� s� g-regresses to
some ����t� s� from ��, where �� j� ����t� S��;

6These will be made explicit in the full paper.



� for every roll back step, where a GSSA in �

���z� a� s� � �F ��z� do�a� s�� � ���z� a� s��

is used to replace F ��t� s� by ���t� A� s� for a subhistory
�� � �A� ���, we have that the guard ���t� A� s� g-regresses
to some ����t� A� s� from ��, where �� j� ����t� A� S��.

The trickiest aspect of this definition is to show that the re-
cursion is indeed well-founded. This is done by simultane-
ous induction on the length of � and the level of the fluents.
Clearly, if a formula g-regresses to another, then it regresses
also (although not vice-versa). The main point however is
that we only ever need to evaluate formulas at S�:

Theorem 6 For an acyclic �, under plausible consistency
conditions for � � Sensed ���, if ��s� g-regresses to some
formula from �, then the only theorem-proving needed to per-
form projection is to evaluate formulas in ��.

Proof: By induction on the total number of simplification
and roll back steps used to g-regress �, and using Corollary 5.

5 JIT-histories
As noted above, we cannot expect to use regression to eval-
uate sensor-fluent formulas in general: a tautology might be
entailed even though nothing is entailed about the component
fluents. However, in a practical setting, we can imagine never
asking the robot to evaluate a formula unless the history is
such that it knows enough about the component fluents, using
the given GSSAs and GSFAs, and their component fluents.
For example, assume we have the indoor temperature ax-

ioms from Section 3.1. We might only ask the robot to evalu-
ate a formula that mentions the indoor temperature for those
histories where the climate control is known to have remained
on from some earlier point in the history where the robot was
known to be indoors. We do not require the robot to know
whether the climate control was on before then (since this
may have required going to a control panel), or even whether
it is indoors now. In general, we call a history just-in-time for
a formula, if the actions and sensing readings it contains are
enough to guarantee that suitable formulas (including guards)
can be evaluated at appropriate points to determine the truth
value of all the fluents in the formula. More precisely:

Definition 5.1 An history � is a just-in-time-history (JIT-
history) for a sensor-fluent formula ���x� s� iff:

� ���x� s� � 
����x� s� j ����x� s� � ����x� s� and � is a
JIT-history for ����x� s� and ����x� s�;

� ���x� s� � �y����y� �x� s� and � is a JIT-history for the
(open) formula ���y� �x� s�;

� ���x� s� is a sensor formula;

� ���x� s� � F ��t� s�, where F is a fluent, and for some
GSFA f���z� s� � �F ��z� s� � 	��z� s��g, � is a JIT-
history for ���t� s�, and��Sensed ��� j� ���t� end ����;

� ���x� s� � F ��t� s�, a fluent, � is an empty history � ����,
and either �� j� F ��t� S�� or �� j� 
F ��t� S��;

� ���x� s� � F ��t� s�, a fluent, � � �� ��A� ���, and for some
GSSA f���z� a� s�� �F ��z� do�a� s�� � ���z� a� s��g, �� is

a JIT-history both for ���t� A� s� and for ���t� A� s�, and
� � Sensed ���� j� ���t� A� end �����.

For JIT-histories we have the following theorem:

Theorem 7 Let � be an action theory as above, and ���x� s�
a sensor-fluent formula. If � is a JIT-history for ���x� s�, then
there exists a formula ��x� s� such that:

1. ���x� s� regresses to ��x� s� from �, and

2. if � is acyclic, then ���x� s� g-regresses to ��x� s�
from �, and either �� j� �x���x� S�� or �� j�
�x�
��x� S��.

Proof: (1) is proven by induction on the length of � and
induction on the structure of ���x� s�; (2) is proven by
simultaneous induction on the length of � and the (max) level
of the fluents in the ���x� s�, and induction on the structure of
���x� s�.

This theorem shows that for JIT-histories, regression is both
a sound and complete way of performing projection.

6 An evaluation procedure for projection
Although our action theories are assumed to be open-world, a
JIT-history provides a sort of dynamic closed world assump-
tion in that it ensures that the truth value of any fluent will be
known whenever it is part of a formula whose truth value we
need to determine. This allows us to evaluate complex formu-
las as we would if we had a normal closed world assumption.
We now consider a Prolog procedure that does this.
We assume the user provides the following clauses:7

� fluent�F �, for each fluent F ,

� sensor�h�, for each sensor function h,

� ini�F �, for each fluent F such that �� j� F �S��,

� closed�F �, for each fluent F such that �� j� F �S�� or
�� j� 
F �S��,

� gsfa��� F� 	�, for each GSFA,

� gssa�a� �� F� ��, for each GSSA, where a is the distin-
guished action term quantified in � and �

Formulas are expressed using and��� �, neg���, equ�t� t��,
and some�v� �� where v is a Prolog constant. We drop the
situation arguments from fluents and sensor functions in for-
mulas (and keep track of the situation in the history).
Histories are represented as lists. For brevity, we assume

a predicate last��� h� r� which extracts the last value r for
sensor function h in history �. Finally, we assume a predi-
cate sub�v� x� �� ��� with the meaning that �� is the formula
obtained by substituting x for v in the formula � (see [6]).
Now we define eval��� �� b�, with the intended meaning

that the formula � evaluates to the truth-value b (tt/ff) for
the history �, as follows:

eval(H,and(P1,P2),tt) :-
eval(H,P1,tt), eval(H,P2,tt).

eval(H,and(P1,P2),ff) :-
eval(H,P1,ff); eval(H,P2,ff).

7For simplicity in what follows, we do not distinguish between
situation calculus formulas and their representations as Prolog terms.



eval(H,neg(P),tt) :- eval(H,P,ff).
eval(H,neg(P),ff) :- eval(H,P,tt).

eval(H,some(V,Pv),tt) :-
sub(V, ,Pv,Px), eval(H,Px,tt).

eval(H,some(V,Pv),ff) :-
not(sub(V, ,Pv,Px), not eval(H,Px,ff)).
/* double negation for ‘‘for all’’ */
/* so not eval(H,Px,ff) flounders! */

eval(H,equ(E,V),tt) :-
sensor(E), last(H,E,R), R=V.

eval(H,equ(E,V),ff) :- /* Neg as failure */
sensor(E), last(H,E,R), not R=V.

eval([(Mu)],F,tt) :- fluent(F), ini(F).
eval([(Mu)],F,ff) :- /* Neg as failure */

fluent(F), closed(F), not ini(F).

eval(H,F,B) :-
fluent(F), gsfa(Alpha,F,Rho),
eval(H,Alpha,tt), eval(H,Rho,B).

eval([(A,Mu)|H],F,B) :-
fluent(F), gssa(A,Alpha,F,Gamma),
eval(H,Alpha,tt), eval(H,Gamma,B).

Observe that a formula eval��� �� b� can either succeed re-
turning tt, succeed returning ff, fail, or not terminate. Un-
der the assumption that all the auxiliary predicates are correct
and terminating, we get the following soundness and a weak
form of completeness for eval:

Theorem 8 Assume that eval��� ���x� s�� B� succeeds with
computed answer �x��t, B�b. If b�tt, then � �
Sensed ��� j� ���t� end ����; if b�ff then � � Sensed ��� j�


���t� end ����.

Proof: By induction on the structure of ���x� s�.

Theorem 9 Let � be a JIT-history for ���x� s�. Then,
eval��� ���x� s�� B� does not finitely fail.

Proof: By induction on the structure of ���x� s�.

Note that we cannot guarantee termination since we can get
into a loop evaluating guards of GSFAs or GSSAs, or by
floundering in trying to evaluate to ff an existential. We can
eliminate the first problem by using acyclic action theories.
For the second, we can close the domain. Let domain�o� be
a user-defined predicate over a finite domain. We can then
change the definition of eval for existentials as follows:

eval(H,some(V,Pv),tt) :-
domain(O), sub(V,O,Pv,Po), eval(H,Po,tt).

eval(H,some(V,Pv),ff) :-
not(domain(O), sub(V,O,Pv,Po),

not eval(H,Po,ff)).

For this new version of eval we get a completeness result:

Theorem 10 Let� be acyclic, let ��s� be a sensor-fluent for-
mula with no free variables except the situation argument s,
and let � be a JIT-history for ��s�. Then, eval��� ��s�� B�
always succeeds, returning either tt or ff.

So under these circumstances, eval is a sound and complete
implementation of projection.

7 Conclusions
We have given a formal definition of progression for a gener-
alized action theory where successor state axioms and sens-
ing information are only conditionally applicable. We also
showed that in certain circumstances, a regression-based eval-
uation procedure could correctly perform the task.
Many open problems remain, however. How can we de-

cide in an automated but practical way when regression can
be used? It may be expecting too much of a conditional plan-
ner to determine what actions it should perform now to permit
it to later use sensing information in this way. An interest-
ing alternative is offered by the high-level program execution
model. Given a program like “if � then do �� else do ��,” the
user can take the responsibility of inserting a prior program
ensuring that the resulting history is just in time for �.
Another related problem is the projection of initial

databases. Once a robot actually performs a sequence of ac-
tions in the world, we would prefer to no longer regress all
the way back to the initial situation, but instead to project the
database forward to the current state [8]. How this can be
done for the action theories we are proposing remains to be
seen.

References
[1] C. Baral and T.C. Son. Approximate reasoning about actions

in presence of sensing and incomplete information. In Proc. of
ILPS’97, 387–401.

[2] R. Fikes and N. Nilsson. STRIPS: a new approach to the ap-
plication of theorem proving to problem solving. In Artificial
Intelligence, 2, 189–208, 1971.

[3] K. Golden and D.S. Weld. Representing sensing actions: the
middle ground revisited. In Proc. of KR’96, 174–185.

[4] J. McCarthy and P. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In Machine Intelli-
gence, vol. 4, Edinburgh University Press, 1969.

[5] H. Levesque. What is planning in the presence of sensing? In
Proc. of AAAI’96, 1139–1146.

[6] H. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.
GOLOG: A logic programming language for dynamic do-
mains. In Journal of Logic Programming, 31, 59–84, 1997.

[7] F. Lin and R. Reiter. State constraints revisited. Journal of
Logic and Computation, 4(5), 655–678, 1994.

[8] F. Lin and R. Reiter. How to progress a database. Artificial
Intelligence, 92, 131–167, 1997.

[9] D. Poole. Logic programming for robot control. In Proc. IJ-
CAI’95, 150–157.

[10] R. Reiter. The frame problem in the situation calculus: A sim-
ple solution (sometimes) and a completeness result for goal
regression. In Artificial Intelligence and Mathematical Theory
of Computation, 359–380. Academic Press, 1991.

[11] R. Reiter. Knowledge in Action: Logical Foundation for De-
scribing and Implementing Dynamical Systems. In prepara-
tion.

[12] D.S. Weld, C.R. Anderson, D.E. Smith. Extending graphplan
to handle uncertainty and sensing actions. In Proc. of AAAI’98,
897–904.


