
Conjunctive Artifact-Centric Services

Piero Cangialosi, Giuseppe De Giacomo, Riccardo De Masellis, and Riccardo Rosati

Dipartimento di Informatica e Sistemistica “Antonio Ruberti”
SAPIENZA – Università di Roma
Via Ariosto, 25, 00185 Rome, Italy
lastname@dis.uniroma1.it

Abstract. Artifact-centric services are stateful service descriptions centered
around “business artifacts”, which contain both a data schema holding all the
data of interest for the service, and a lifecycle schema, which specifies the pro-
cess that the service enacts. In this paper, the data schemas are full-fledged re-
lational databases, and the lifecycle schemas are specified as sets of condition-
action rules, where conditions are evaluated against the current snapshot of the
artifact, and where actions are suitable updates to database. The main character-
istic of this work is that conditions and actions are based on conjunctive queries.
In particular, we exploit recent results in data exchange to specify through tuple-
generating-dependencies (tgds) the effects of actions. Using such basis we de-
velop sound and complete verification procedures, which, in spite of the fact that
the number of states of an artifact-centric service can be infinite, reduce to the
finite case through a suitable use of homomorphism induced by the conjunctive
queries.

1 Introduction

In the past years, what can be called the artifact-centric approach to modeling workflows
and services has emerged, with the fundamental characteristic of considering both data
and processes as first-class citizens in service design and analysis [20, 16, 11], see also
[26, 1]. In this approach the key elements of services are (i) data manipulated, which
correspond to key business-relevant entities, (ii) the service lifecycle (i.e., the process
that the service follows), and (iii) the tasks invoked and executed. Executing a task has
effects on the data managed by the service, on the service state, as well as on the in-
formation exchanged with the external world. This “artifact-centric” approach provides
a simple and robust structure for workflow and services, and has been demonstrated in
practice to permit efficiency in business transformation [5, 6]. From the formal point
of view, artifact-centric services deeply challenge the research community by requiring
simultaneous attention to both data and processes. Indeed, on the one hand they deal
with full-fledged processes and require analysis in terms of verification of sophisticated
temporal properties [10]. On the other hand, the presence of data [2] makes the usual
analysis based on model checking of finite-state systems impossible in general, since
when data evolution is taken into account the whole system becomes infinite state. In
this paper, we provide a formal model for a family of artifact-centric services, based
on the notion of conjunctive queries, used both to define preconditions and effects of
tasks. In this setting we take advantage of the recent literature on data exchange and data
integration [14, 17], which has deeply investigated mapping between databases based
on correspondences between conjunctive queries, the so call tuple-generating depen-
dencies (tgds) in the database jargon [2]. In a nutshell, the core idea of our work is

2 Cangialosi, De Giacomo, De Masellis, Rosati

to consider the current state of the data and their state after the performance of a task
as two databases related through a set of tgds. More precisely, our model follows the
spirit of [5, 15], but with important generalizations. The artifact “data schema” is a full-
fledged relational database, which is used to hold relevant information about the artifact
as it passes through the workflow. The “lifecycle schema”, which is used to specify the
possible ways that the artifact can pass through the workflow, is specified as a set of
condition-action rules, where the condition is evaluated against the current snapshot of
the artifact (i.e., the current state of the database), and where the actions are “tasks”
invocations, which query the current snapshot and generate the next snapshot possibly
introducing existential values representing inputs from the outside world. Similar to the
context of semantic web services [23], the behaviors of the tasks used here are character-
ized using pre- and post-conditions. The key point, however, is that both pre-conditions
and post-conditions are expressed as conjunctive queries. On top of such a system we
introduce a powerful verification logic based on a variant of µ-calculus [18, 21, 13, 7] to
express temporal properties. Our verification logic is also based on conjunctive queries,
in that it requires the atomic formulas to be conjunctive queries and disallows forms of
negation of such queries. No limitations whatsoever are instead put on the fixpoint for-
mulas that are the key element of the µ-calculus. The main result of the paper is showing
that the resulting formalism, while quite expressive, and inherently infinite state, is de-
cidable under a reasonable restriction, called weak-acyclicity [14], on the form of the
tgds expressing the effects of actions. In particular we develop a sound, complete and
terminating reasoning procedure for the verification formalism. The crux of the result is
that conjunctive queries are unable to distinguish homomorphic equivalent databases,
and under suitable but quite general circumstances, the number of homomorphically
different states can be bounded to be finite. Thus we can reduce verification to model
checking of a finite state abstraction (based on homomorphic equivalence) of the sys-
tem.

2 Framework

The framework that we propose, called conjunctive artifact-centric services, merges
data and processes following the artifact-centric approach. Namely an artifact is com-
posed by the following three components:

– Artifact Data Schema, which captures the data schema of the information ma-
nipulated in the artifact. States of the processes correspond to instances to such a
schema. Technically, the artifact data schema is a relational schema, and an instance
is a relational database.

– Artifact Tasks, which is the set of atomic actions that can be used to manipulate
data in the artifacts, i.e., to compute new states given the current one. We assume
that the user can freely query (through certain answers, see later) the current data
instance, and for simplicity we disregard a specific treatment of the output to the
user. Technically, such tasks are specified in terms of dependencies between con-
junctive queries.

– Artifact lifecycle, which specifies the actual process of the artifacts in terms of
tasks that can be executed at each state of the process. Technically, the artifact
lifecycle is specified in terms of condition-action rules, where the conditions are
again based on conjunctive queries.

Conjunctive Artifact-Centric Services 3

It should result immediately clear that such a setting produces in general infinite state
processes, and that verification of such processes is in general undecidable. We will
leverage on the notion of conjunctive query and the associated notion of homomorphism
between instances to gain decidability of verification in spite of the infinite states.

2.1 Artifact Data Schema

Let us enter the formalism by showing how data are represented. As customary in rela-
tional databases, we consider an artifact data schema as a tuple S = 〈R, c〉 where:

– R = R1, . . . ,Rn is a finite set of relational (predicate) symbols each one with an
associated arity;

– c = c1, c2, . . . is a finite or countably infinite set of constants.

Given an artifact data schema S, an artifact data instance over a schema S is a stan-
dard first-order interpretation with a fixed interpretation doman. More precisely a data
instance is a couple I = 〈∆, ·I〉 where:

– ∆ is a countably infinite domain fixed a-priori for every data instance. For conve-
nience we partition∆ into two countable infinite disjoint sets const(∆) and ln(∆),
and we use the first set to interpret constants, while the second is needed to correctly
interpret existentials, we call the latter labeled nulls (see later);

– ·I is an interpretation function that associates:
• to each constant symbol c a constant cI ∈ const(∆) such that for each
c1, c2 ∈ const(∆) if c1 6= c2 then cI1 6= cI2, namely we make the Unique
Name Assumption, furthermore we require that every interpretation interprets
contants in the same way, that i, given any two interpretation I and I ′, we have
that cIn = cI

′

n for each constant cn;
• to each m-ary relation symbol Ri a (finite) m-ary relation RiI ⊆ ∆m.

Intuitively, an artifact data instance is alike a relational database instance, since the ·I
function lists all tuples belonging to each relation.

We call a fact an expression Ri(d1, . . . , dm). We say that a fact belongs to and
interpretation I iff d = 〈d1, . . . , dm〉 ∈ RI

i . We can characterize the interpretation
function ·I simply by listing of its facts (notice that such a set is finite). Following the
database literature [2], we call to the active domain ∆̄I of an instance I the set of
domain elements appearing in facts of I .

To query data instances we use a special class of first-order formulas, widely used
in database theory, which corresponds to relational algebra select-project-join queries:
conjunctive queries. A conjunctive query is a formula cq of the form:

∃y.body(y,x)

where body is a conjunction of atomic formulas involving constants (but no labeled
nulls), existentially quantified variables y and free variables x.

Intuitively a conjunctive queries returns as answer the domain elements (both con-
stants and nulls) that substitute to the free variables make the formula true in the data
instance. More formally, let I = 〈∆, ·I〉 an artifact instance, the answer to a conjunctive
query cq(x) with free variables x, denoted by cq(x)I is defined as:

cq(x)I = {η | 〈I, η〉 |= cq(x)}

4 Cangialosi, De Giacomo, De Masellis, Rosati

with η : x→ ∆ an assignment for the free variables. In fact, as usual in the database lit-
erature [2], we see assignments η simply as tuples of domain elements to be substituted
to the free variables.

The characterizing property of conjunctive queries from the semantical point of
view is that they are invariant under homomorphic equivalence [2]. That is if two data
instances I and I ′ are homomorphic, then each boolean (without free variables) con-
junctive query cq produces exactly the same (boolean) answer: cq(x)I = cq(x)I

′
.

Homomorphism [8] indeed plays a key role in our setting, so we remind its defini-
tion here. Given two instances I1 = 〈∆, ·I1〉 and I2 = 〈∆, ·I2〉 over the same schema
S, a homomorphism from I1 to I2, denoted by h : I1 → I2, is a function from ∆ to ∆
such that:

1. for every constant c, we have that h(c) = c and
2. for every 〈d1, . . . , dm〉 ∈ RI1

i , we have that 〈h(d1), . . . , h(dm)〉 ∈ RI2
i .

Two instances I1 and I2 are homomorphically equivalent, written I1
h= I2, if there

exist two homomorphisms h1 : I1 → I2 and h2 : I2 → I1.
A homomorphism h : I1 → I2 preserves the interpretation of constants but not

of labeled nulls of I1, which are mapped either to constants or nulls in I2, that is the
homomorphism can “determine” some nulls values assigning them to constants. In other
words, homomorphism interprets nulls of I1 as existential values.

The existential interpretation of labeled nulls given by homomorphisms suggest a
different way of answering to a conjunctive query, that essentially sees an interpretation
as a theory where all nulls are treated as existential values. To make this notion precise,
given an interpretation I we define the (infinite) set WI of all interpretations I ′ =
〈∆, ·I′〉 over S such that there exists an homomorphism h : I → I ′. Then we define
the Certain Answers of a conjunctive query cq as:

certI(cq) =
⋂

w∈WI

cqIw

That is the certain answers to a query are all those tuples of (active domain) elements
(in fact constants) in I that are produced by the query in every interpretation I ′ such
that there exists an homomorphism h : I → I ′. Formally, it can be shown that, the
certain answers correspond to the tuples of constants such that, substituted to the free
variables of the query, would make the resulting query logically implied by the theory
constituted by a single conjunctive query formed by the logical AND of all facts in I ,
considering all labeled nulls as existentially quantified. From a more pragmatical point
of view, when using certain answers we consider the current instance as representative
of several possible instances, and while we assume to have incomplete information
on which is exactly the current instance, we still produce all answers that would be
produced in all possible instances.

In our framework, we assume that the user can pose arbitrary conjunctive queries
to the current instance, but require them to be evaluated returning the certain answers.
In this way we become independent of the particular null values occurring in the data
instance, since they are not returned as answers, though they can still be used as witness
of existential quantified variables.

Conjunctive Artifact-Centric Services 5

2.2 Artifact Tasks

A task is specified as a set of effects that it can produce, and when it is performed over
the current (artifact) data instance, the result is a completely new data instance made
up of a subset of the action’s effects. The formalization of an effect is borrowed from
the database and data exchange literature and in particular from the notion of tuple
generating dependencies (tgds) [2, 14]. A (conjunctive) effect specification ξ over a
schema S is a formula of the form:

∃y.φ(x,y, c)→ ∃w.ψ(x,w,d)

where φ and ψ are conjunctions of atoms over S; x, y,w denote the variables and c,d
the constants occurring in φ and ψ. We call the left-hand side of ξ the premise, and
the right-hand side the conclusion. Notice that both the premise and the conclusion are
conjunctive queries. Formally, let I = 〈∆, ·I〉 be an artifact instance over the schema
S, and ξ = ∃y φ(x,y, c) → ∃w ψ(x,w,d) an effect specification. The result of
enacting effect specification ξ on I , is a set of facts ξ(I) defined as follows:

Let η = (∃y φ(x,y, c))I , be the answer to the query ∃y φ(x,y, c) in I , then
for each ηi ∈ η we proceed as follows. For each atomic formula Ri(x,w,d)
occurring in ψ, we include in ξ(I) a new fact RI′

i (x,w,d)|ψηi
, obtained by

substituting every variable in x with the corresponding element given by the
assignment ηi, and every variable in w with a fresh (not appearing elsewhere)
labeled null ln.

Intuitively, the premise, acting like a query, selects values form the current instance,
while the conclusion builds the resulting instance by inserting them in possibly different
positions of the schema, and by potentially introducing fresh elements, namely, the
labeled nulls and fixed constants.

A task T for a schema S is specified as a set ξ = {ξ1, . . . , ξn} of conjunctive effect
specifications. The result of executing task T on I , denoted by I T−→ IT , is a new
instance IT = 〈∆, ·IT 〉 on the same schema S, obtained as the union of the enactments
of each effect specification. Namely IT = 〈∆, ·IT 〉 where is the interpretation function
·IT

characterized by the facts
⋃
ξ∈ξ ξ(I).

Let’s make some key observations on such tasks. First, we observe that the role of
the existential qualification on the two sides of an effect specification is very different.
The existential qualification on the left-hand side is the usual one used in conjunctive
queries, which projects out variables used only to make joins. The existential qualifica-
tion on the right-hand side, instead, is used as a witness of values that should be chosen
by the user when executing the effect. In other words, the choice function used for as-
sign witness to the existential on the right should be in the hand of the user. Here since
we do not have such a choice at hand, we introduce a fresh null, to which we assign
an existential meaning through homomorphism. Essentially we imply that there exists
a choice made by the user of the value assigned to those variables.

The second observation is that we do not make any persistence (or frame [22])
assumption in our formalization. In principle at every move we substitute the whole old
data instance with a new one. On the other hand, it should be clear that we can easily
write effect specifications that copy big chunks of the old instance into the new one. For
example, Ri(x)→ Ri(x) copies the entire extension of a relation Ri.

6 Cangialosi, De Giacomo, De Masellis, Rosati

2.3 Artifact Lifecycle

The artifact lifecyle is defined in terms of condition/action rules, that specify, for every
instance, which tasks can be executed. A (condition/action) rule for a schema S is a
couple % = 〈π, T 〉 where π is a precondition, and T is a task. The precondition is a
closed formula over S of the following form:

π ::= cq | ¬π | π1 ∧ π2

where cq is a boolean conjunctive query. Preconditions are arbitrary boolean combi-
nations of boolean conjunctive queries interpreted under the certain answer semantics,
namely:

I B cq iff certI(cq) = true
I B ¬π iff I 6 Bπ
I B π1 ∧ π2 iff I B π1 and I B π2

In order to execute a task T , on an instance I , precondition π must certainly hold in I ,
written as I B π, and, if this is the case, a new instance IT is generated, according to
T ’s effects.

Observe that, while we disallow negation in task effects so as to exploit the theory
of conjunctive queries, which do not include negation, in the condition/action rules we
allow for it, but to do so we actually require conditions to be based on certain answers
of conjunctive queries, in this way we force a sort of “negation-as-failure” for negation
[9].

Example 1. We illustrate here an example of specification. The scenario concerns an
institution, e.g. a bank, that provides services to its customers, such as loans or money
transfers. Every service has a distinct cost, that has to be paid in advance by customers
that asked for it. A customer may inquire for the provision of a service, that first has to
be approved by a supervisor, then paid, and finally provisioned by the bank. Moreover
there are special “premier customers” that do not need the service’s approval.

The artifact schema S consists of the following relation sym-
bols: Customer(cust ssn,name) is the relation containing customers
information; Service(serv code, cost) contains information about the
different types of services that the bank offers to its customers;
Service Claimed(serv code, cust ssn) keeps track of information of services
requested by clients; Request Exam(serv code, spv name, outcome) is the relation
containing the names of supervisors in charge of evaluating customers’ claims;
Payment(serv code, cust ssn, amount) contains information about service pay-
ments; Service Provided(serv code, cust ssn) holds the services which have
been provided; Premier Member(cust ssn) contains the customers that reach the
“premier” status; Account(acc id, cust ssn,maximum withdrawal , credit card) is
the relation that holds information about bank accounts.

Tasks model the possible modifications that can be performed over the artifact
schema. As syntactic sugar, we include some input parameters (the symbols between
brackets after the task name). In order to execute them such parameters must be instan-
tiated with constants.

– Claim service(cust ssn, serv code):
• ξ1 = ∃x, y. Customer(cust ssn, x) ∧ Service(serv code, y) →
Service Claimed(serv code, cust ssn)

Conjunctive Artifact-Centric Services 7

• ξ2, . . . , ξ9 = copy frame
models the choice of the customer cust ssn to apply for the provision of a new
service of type serv code. Since the resulting instance is a completely new one
consisting in tuples added by the task only, we need to explicitely “copy” all
facts that we do not require to be dropped after the task execution. That is ex-
actly the role of effects ξ2, . . . , ξ9 that, for all relations R1, . . . ,Rm, are defined
as ξi = Ri(x1, . . . , xn) → Ri(x1, . . . , xn) with i ∈ {1, . . .m}. Intuitively,
the result of firing task Claim service(cust ssn, serv code) on an instance I
results in a new instance I ′ that either contains I but also include the new tuple
Service Claimed(cust ssn, serv code) provided that the premise are satisfied
by I , or I ′ = I if not.

– Make payment(cust ssn, serv code, amount):
• ξ1 = Service Claimed(cust ssn, serv code) →
Payment(serv code, cust ssn, amount)

• ξ2, . . . , ξ9 = copy frame
models the payment operation performed by a customer for a service that has
been previously requested, i.e., the resulting instance may include the tuple
Payment(cust ssn, serv code, amount).

– Grant approval(serv code):
• ξ1 = Service Claimed(serv code, x) →
∃z.Request Exam(serv code, z, “approved”)

• ξ2, . . . , ξ9 = copy frame
represents the approval of a service that has been requested, by including the fact
Request Exam(serv code, ln, “approved”) where ln is a fresh labeled null that
models a possible supervisor.

– Provide services():
• ξ1 = Service Claimed(x, y) ∧Request Exam(x, v, “approved”) →
Service Provided(x, y)

• ξ2, . . . , ξ9 = copy frame
models the delivery of all services that have had explicitly approved by a supervisor
and that was already paid. The task

– Quick provide service():
• ξ1 = Service Claimed(x, y) → Service Provided(x, y)
• ξ2, . . . , ξ9 = copy frame

delivers all the services for which it was paid the correct amount and that have been
requested from a premier customer. Lastly

– Award premier status():
• ξ1 = ∃y, u, w, t. Customer(x, y) ∧ Service Provided(y, x) ∧
Account(u, x, w, t) → Premier Member(x)

• ξ2, . . . , ξ9 = copy frame
awards the premier status to all customers holding a bank account that applied for
the provision of a service that had already been accepted.

Finally, we assume that condition-action rules that specify the artifact lifecycle
allow for executing every task in every state, except for the following rules:

%1 = 〈∃x, y, u, v, w. Payment(x, y, w) ∧ Service(x, u) ∧Request Exam(x, v, “approved”),
Provide services()〉

%2 = 〈∃x, y, w. Payment(x, y, w) ∧ Service(x,w) ∧ Premier Member(y),
Quick provide service()〉

%3 = 〈∃x, y, u, w, t. Service Provided(x, y) ∧Account(u, y, w, t),
Award premier status()〉 �

8 Cangialosi, De Giacomo, De Masellis, Rosati

2.4 Artifact Executions

Let us consider an artifact as a tuple A = 〈S, T , C〉, where: (i) S is an artifact data
schema; (ii) T is a set of tasks; and (iii) C is a set of condition/action rules.

An artifact transition system forA starting from a initial data instance I0 is a tuple
AA = 〈Σ, σ0, L,Tr〉 where (i) Σ is the (possibly infinite) set of states; (ii) σ0 is the
initial state; (iii) L : Σ → I is a labeling function that associates to each state in Σ a
data instance of S, with the constraint that L(σ0) = I0; (iv) Tr ⊆ I × T × I is the
transition relation such that 〈σ, T, σ′〉 ∈ Tr , denoted σ T=⇒ σ′ if there exists a rule
% = 〈π, T 〉 such that L(σ) B π, and L(σ′) = I ′ where I ′ is the result of applying task
T to data instance I = L(σ), i.e we must have that I T−→ I ′.

Notice that if an artifact A may generate an infinite number of data instances in its
evolution, then every transition system associated to it must have and infinite number
of states in order for the labeling function L to be correctly defined. Though transition
systems may have more states than data instances, which implies that more states may
be labelled with the same data instance. Among the various artifact transition systems
for A starting from a initial data instance I0 there is one of particular significance, the
so called execution tree of an artifact A starting from I0, in which each state of the
transition system correspond to the full history that has generated it. Such an execution
tree is a transition system TA = 〈Σ, σ0, L,Tr〉whose set of states is defined as follows:
(i) the root is σ0; (iii) given a state σ for each task T ∈ T such that there exists a rule
% = 〈π, T 〉 such that L(σ)B π, add a state σ′T , and define L(σ′T) = I ′ where I ′ is data
instance resulting by applying T to L(σ). We can interpret σ′T as the T -successor of the
node σ.

We observe that the number of states of the execution tree is indeed infinite, and also
that given any state σ, by looking at the path from the root σ0 to σ, we can reconstruct
the full history that has lead to σ, including the sequence of tasks invoked and the
resulting data instance at each step.

All transition systems for and artifact A starting from a given data instance I0, even
if different, denote the same behavior, namely the behavior of the artifact A starting
from I0 and executing the various tasks. To formally capture such and equivalence
between transition system, we make use of the notion of bisimulation [19]. In fact in
formally detailing such a notion, we consider right from the start that the user can only
query data instances through conjunctive queries, evaluated to return certain answers.

Given two artifact transition systems A1 = 〈Σ1, σ0,1, L1,Tr1〉 and A2 =
〈Σ2, σ0,2, L2,Tr2〉 a bisimulation is a relation B ⊆ Σ1 ×Σ2 such that:

〈σ1, σ2〉 ∈ B implies that:
1. for every conjunctive query cq we have that certL1(σ1)(cq) =
certL2(σ2)(cq);

2. if σ1
a=⇒ σ′1 then there exists σ′2 such that σ2

a=⇒ σ′2 and 〈σ′1, σ′2〉 ∈ B;
3. if σ2

a=⇒ σ′2 then there exists σ′1 such that σ1
a=⇒ σ′1 and 〈σ′1, σ′2〉 ∈ B.

We say that two states σ1 and σ2 are bisimilar, denoted as σ1 ∼ σ2 if there
exists a bisimulation B such that 〈σ1, σ2〉 ∈ B. Two transition systems A1 =
〈Σ1, σ0,1, L1,Tr1〉 and A2 = 〈Σ2, σ0,2, L2,Tr2〉 are bisimilar if σ0,1 ∼ σ0,2. We
are now able to introduce the verification formalism.

Conjunctive Artifact-Centric Services 9

3 Verification Formalism

We turn to verification of conjunctive artifact-centric services. To specify dynamic prop-
erties we will use µ-calculus [13] which is one of the most powerful temporal logics for
which model checking has been investigated, and indeed is able to express both linear
time logics, as LTL, and branching time logics such as CTL or CTL* [10]. In particu-
lar, we need to introduce a variant of µ-calculus, called µL that conforms with the basic
assumption of our formalism: the use of conjunctive queries and certain answers to talk
about data instances. This intuitive requirement can be made formal as follows: our µ-
calculus variant must by invariant with respect to the notion of bisimulation introduced
above.

Given an artifact A = 〈S, T , C〉, the verification formulas of µL for A have the
following form:

Φ ::= cq | ¬Φ | Φ1 ∧ Φ2 | [T]Φ | 〈T 〉Φ | µZ.Φ | νZ.Φ | Z

where cq is a boolean conjunctive query (interpreted through certain answers) over the
artifact schema, Z is a predicate variable symbol.

The symbols µ and ν can be considered as quantifiers, and we make use of notions
of scope, bound and free occurrences of variables, closed formulas, etc. The definitions
of these notions are the same as in first-order logic, treating µ and ν as quantifiers. In
fact, we are interested only in closed formulas as specification of temporal properties
to verify. For formulas of the form µZ.Φ and νZ.Φ, we require the syntactic mono-
tonicity of Φ wrt Z: Every occurrence of the variable Z in Φ must be within the scope
of an even number of negation signs. In µ-calculus, given the requirement of syntac-
tic monotonicity, the least fixpoint µZ.Φ and the greatest fixpoint νZ.Φ always exist.
In order to define the meaning of such formulas we resort to transition systems. Let
AA = 〈Σ, σ0, L,Tr〉 be a transition system for A with initial data instance I0, and let
V be predicate valuation on A, i.e., a mapping from the predicate variables to subsets
of the states in A. Then, we assign meaning to µ-calculus formulas by associating to A
and V an extension function (·)A

V , which maps µ-calculus formulas to subsets of I. The
extension function (·)A

V is defined inductively as follows:

(cq)A
V = {σ ∈ Σ | certL(σ)(cq)}

(Z)A
V = V(Z) ⊆ Σ

(¬Φ)A
V = Σ − (Φ)A

V
(Φ1 ∧ Φ2)A

V = (Φ1)A
V ∩ (Φ2)A

V

(〈T 〉Φ)A
V = {σ ∈ Σ | ∃σ′. σ T=⇒ σ′ and σ′ ∈ (Φ)A

V}
([T]Φ)A

V = {σ ∈ Σ | ∀σ′. σ T=⇒ σ′ implies σ′ ∈ (Φ)A
V}

(µZ.Φ)A
V =

⋂
{E ⊆ Σ | (Φ)A

V[Z←E] ⊆ E }
(νZ.Φ)A

V =
⋃
{E ⊆ Σ | E ⊆ (Φ)A

V[Z←E]}

Intuitively, the extension function (·)A
V assigns to the various constructs of µ-calculus

the following meanings:

– The boolean connectives have the expected meaning.
– The extension of 〈T 〉Φ includes the states σ such that starting from σ, there is an

execution of task T that leads to a successive state σ′ included in the extension of
Φ.

10 Cangialosi, De Giacomo, De Masellis, Rosati

– The extension of [T]Φ includes the states σ such that starting from σ, each execu-
tion of task T leads to some successive state σ′ included in the extension of Φ.

– The extension of µZ.Φ is the smallest subset Eµ of Σ such that, assigning to Z the
extension Eµ, the resulting extension of Φ is contained in Eµ. That is, the extension
of µX.Φ is the least fixpoint of the operator λE .(Φ)A

V[Z←E] (here V[Z ← E] denotes
the predicate valuation obtained from V by forcing the valuation of Z to be E).

– Similarly, the extension of νX.Φ is the greatest subset Eν of Σ such that, assign-
ing to X the extension Eν , the resulting extension of Φ contains Eν . That is, the
extension of νX.Φ is the greatest fixpoint of the operator λE .(Φ)A

V[X←E].

The reasoning problem we are interested in is model checking: verify whether a µL
closed formula Φ holds in an artifact A with initial data instance I0. Formally such

problem is defined as checking whether σ0 ∈ I ∈ (Φ)T
I0
A

V (where V is any valuation,
since Φ is closed), that is, whether Φ is true in the root of the A execution tree.

On the other hand we know that there are severals transition system that are bisimilar
to the execution tree TI0A . The following theorem state that the formula evaluation in µL
is indeed invariant wrt bisimilarity, so we can equivalently check any such transition
systems.

Theorem 1. Let A1 and A2 be two bisimilar artifact transition systems. Then, for every
pair of states σ1 and σ2 such that σ1 ∼ σ2 (including the initial ones), for all formulas
Φ of µL, we have that σ0,1 ∈ (Φ)A1

V iff σ0,2 ∈ (Φ)A1
V .

Proof. The proof is analogous to the standard proof of bisimulation invariance of mu-
calculus, see e.g., [7], though taking into account our specific definition of bisimulation,
which makes use of conjunctive queries and certain answers as their evaluation.

In particular if, for some reason we can get a transition system that is bisimilar to
the execution tree, and is finite, then we can apply the following theorem.

Theorem 2. Checking a µL formula Φ over a finite transition system AA =
〈Σ, σ0, L,Tr〉 can be done in time

O((|A| · |Φ|)k)

where |A| = |Σ| + |Tr |, i.e., the number of states plus the number of transitions of A,
|Φ| is the size of formula Φ (in fact, considering conjunctive queries as atomic), and k is
the number of nested fixpoints, i.e., fixpoints whose variables are one within the scope
of the other.

Proof. We can use the standard µ-calculus model checking algorithms [13], with the
proviso that for atomic formulas we use the computation of certain answers of conjunc-
tive queries.

Example 2. Continuing the example introduced above, suppose now we have an
initial artifact data instance where: CustomerI0 = {〈337505, “JohnSmith”〉,
〈125232, “MaryStewart”〉}, and ServiceI0 = {〈L057, 100〉, 〈L113, 150〉,
〈C002, 50〉}, and all the other relations are empty. Consider the following liveness prop-
erty, which aks if it is actually possible to obtain the provision of a service:

µZ. ((∃ x1, x2, x3.Service(x1, x2) ∧ Service Provided(x1, x3)) ∨
∨
T∈T
〈T 〉Z

Conjunctive Artifact-Centric Services 11

The formula is actually true: for example, a state in which
Service Provided(L057, 337505) holds can be reached after the following sequence
of tasks: Claim Service(337505, L057), Make Payment(337505, L057, 100),
Grant Approval(L057) and finally Provide Services(). Next consider the safety
property asking whether every possible reachable instance will always contain the
information that the service L113 has been paid and provided:

νZ. (∃ x1, x2, x3.Payment(L113, x1, x2)∧ Service Provided(L113, x3)∧
∧
T∈T

[T](Z))

that is trivially false, since in the initial state I there is no payment for any service.
More sophisticated properties such as strong form of fairness for example are also easily
expressible in µL, though for space limitation we don’t report them here �

4 Results

Notice that we still do not have a concrete technique for the verification problem, since
model checking results in Theorem 2 only apply to finite structures. In fact, as a con-
sequence of the undecidability of the implication problem for tgds (see e.g. [2]), it is
obvious that, without any restrictions on effect specfications, the model checking in our
setting is undecidable. Addressing condition of decidability is the purpose of this sec-
tion. We start by introducing the notion of Skolem transition system and showing its
relationship with the concept of execution tree of an artifact.

4.1 Skolem Transition System

For every effect specification ξ = ∃y φ(x,y, c) → ∃w ψ(x,w,d) and for every
w ∈ w we define a Skolem term fξw(x). Such Skolem term is interpreted as a fixed
injective function fξw : ∆ → ln(∆). In this way, enacting an effect ξ on a the data
instance I results in the set of facts RI′

i (x, fξw1
(x), . . . , fξwn

(x),d)|ψηi
, for every for

every atom RI′

i (x, w1, . . . , wn),d) that occurs in ψ and every answer to the left-hand-
side query ηi ∈ (∃y.φ(x,y, c)I). The Skolem execution of a task T in I is the data
instance J formed by the union of all Skolem enactment of the effects in T . Notice that
being the interpretation of Skolem terms an fixed function, the Skolem execution of a
task is fully determined and functional.

Given an artifact A = (S, T , C) and an initial artifact data instance I0, we define
the Skolem transition system SA = 〈Σs, σ0,s, Ls,Trs〉 inductively as follows:

– σ0,s ∈ Σ and such that Ls(σ0,s) = I0;
– for all instances σ ∈ Σs and for each task T ∈ T such that there exists a rule
% = 〈π, T 〉 such that Ls(σ) B π, let J be data instance resulting from the Skolem
execution of task T in Ls(σ) then:

• if there exists an instance σ′ ∈ Σs such that Ls(σ′)
h= J then add the transition

σ
T=⇒ σ′ to Trs;

• if such a state does not exists, then add the a new state σJ to Σ with Ls(σJ) =
J to I and add the transition edge σ T=⇒ σJ to Trs.

12 Cangialosi, De Giacomo, De Masellis, Rosati

Theorem 3. Let A = (S, T , C) be an artifact and I0 be a data instance over schema
S. Then, the execution tree TA,Io = 〈Σt, σ0,t, Lt,Tr t〉 is bisimilar to the Skolem tran-
sition system SA,Io

= 〈Σs, σ0,s, Ls,Trs〉.

Proof. Let us consider the bisimulation relationBts = {〈σt, σs〉 | σt ∈ Σt∧σs ∈ Σs∧
Lt(σs)

h= Lt(σt)}. This is the relation formed by the pris of states of the two transition
system such that their labeling data instances are homomorphically equivalent. We show
that Bts is bisimulation (according to our definition). Indeed consider 〈σs, σt〉 ∈ Bts.
Then:
1. For each cq, since Lt(σs)

h= Lt(σt) we have that certLt(σs)(cq) = certLt(σs)(cq)
from the definition of certain answers and homomorphical equivalence.

2. If σt
a=⇒ σ′t then there is a rule % = 〈π, T 〉 and Lt(σt)Bπ. Since Lt(σs)

h= Lt(σt)
then (i) Ls(σs)B π as well, so σs

a=⇒ σ′s moreover it is easy to see that Lt(σ′t)
h=

Ls(σ′s) by considering definition of executing a task and a Skolem executing task.
3. Symmetric to the previous case.

Finally observe that since Lt(σ0,t) = Ls(σ0,s) = I0 we trivially get that
〈σ0,s, σO,t〉 ∈ Bts.

This theorem basically allow us to make use of a Skolem transition system rather than
an execution tree for our verification tasks, taking advantage of Theorem 1. using equiv-
alence classes of homomorphically equivalent instances for the purpose of verification.
Notice, however, that this theorem it is not sufficient to achieve a decidability result,
since the number of state in the Skolem transition system is bounded only by the num-
ber of homomorphically non-equivalent data instances, which is infinite in general. Next
we concentrate on conditions that guarantee its finiteness.

4.2 Decidability

Given an artifact A = 〈S, T , C〉 and the set I of possible interpretations over S, we
consider two different functions: the first one, f : T × I → I, is the usual result of
Skolem executing a task on I; while the second one, g : T × I → I, is the inflationary
variant of the first one: g(T, I) = f(T, I)∪I , that is g generates the result of Skolem ex-
ecuting the task T on I and then copies all “old” facts of I . Notice that no contradiction
can arise since effects of tasks, being based on conjunctive queries, are only positive.
For f and g we have the following results:

Lemma 1. Functions g and f are monotonic wrt set containment. Namely, for every
task T and instance I , if I ⊆ J , we have both f(T, I) ⊆ f(T, J) and g(T, I) ⊆ g(T, J).

Lemma 2. Function g is monotonically increasing, namely for every task T and in-
stance I , I ⊆ g(T, I) holds.

The same result does not hold for function f, because some facts may not be propagated.

Lemma 3. For every task T and instance I , we have that f(T, I) ⊆ g(T, I).

Let us inductively define the set of instances LI0 obtained, starting from I0, by
repeatedly applying g(·, ·) in all possible ways. This is the least set such that

– I0 ⊆ LI0 ;

Conjunctive Artifact-Centric Services 13

– if I ′ ⊆ LI0 then, for every T ∈ T , g(T, I ′) ⊆ LI0 .

Notice also that, as an immediate consequence of its inductive definition, we get
g(T,LI0) = LI0 , since LI0 is a fixpoint, indeed, the least fixpoint [25].

Lemma 4. Let I0 be an instance andLI0 as above, then for every sequence of instances
I0, . . . , In such that Ii+1 = g(Ti, Ii), we have that Ii ⊆ LI0 , for i = 0, . . . , n.

Proof. By induction of length n of a task sequence.

Lemma 5. Let A = 〈S, T , C〉 be an artifact, I0 and initial data instance, and LI0 as
above. Then for every sequence of instances I0, . . . , In, such that Ii+1 = f(Ti, Ii), we
have that Ii ⊆ LI0 , for i = 0, . . . , n.

Proof. By Lemma 3 and 4.

Roughly speaking, the above lemmas, guarantee that every possible instance that can be
produced from I0 by applying in every possible way both f and g functions is bounded
by the least fixpoint LI0 . Notice however that LI0 is infinite in general, in order to get
decidability we will still need a finite bound on LI0 .

To get such condition we exploit results from [14] on weakly-acyclic tgds. Weak-
acyclicity is a syntactic notion that involves the so-called dependency graph of the set
of tgds TG. Informally, a set TG of tgds is weakly-acyclic if there are no cycles in the
dependency graph of TG involving “existential” relation positions. The key property
of weakly-acyclic tgds is that chasing a data instance with them (i.e., applying them in
all possible way) generates a stet of facts (a database) that is finite. We refer to [14]
for more details. We show that, under the assumption that the tgds of the artifact are
weakly-acyclic, the set LI0 introduced above is finite.

Lemma 6. Let A = 〈S, T , C〉 be an artifact. If all effect specifications in every task
T ∈ T are weakly-acyclic, then the fixpoint LI0 has finite cardinality.

Proof. If the set of all effect specification is weakly-acyclic, from [14] we
know that the dependency graph has no cycle going through a special edge
[14]. Since every special edge represents the application of a Skolem func-
tion, it follows that for every Skolem execution task sequence, it is not possi-
ble to nest the same Skolem function. Indeed, suppose that at a certain point,
an effect specification ξ = ∃y.φ(x,y, c) → ∃w.ψ(x,w,d) adds a fact
RI
i (x, fξw1

(x), . . . , fξwi
(fξ

′

wj
(. . . (fξwi

(x)), . . . , fξwn
(x),d)|ψηi

, this means that: (i) there
is at least a special edge from a position p1 in a relation Rj that occurs in φ, to a po-
sition p2 in Ri that occurs in ψ, due to the presence of the outermost Skolem function
fξwi

, (ii) there is a sequence (eventually empty) of special edges that propagate values
in position p2 to position pm, due to the presence of Skolem function between the out-
ermost and the innermost one, and (iii) there is a sequence (of length at least one) of
non-special edges that propagate values from pm back to p1, because the innermost
Skolem function fξwi

is nested in itself (the outermost). But this contradicts the hypoth-
esis of weakly-acyclic set of effect specification. Since the domain and the image of
a Skolem function is finite, and no nesting of the same Skolem function is possible,
there is a bound on the number of different values that can exist in every position of the
schema. As a consequence, the number of possible instances that can be obtained from
a (finite) initial instance I0 by applying g in every possible way is finite. Given that g is
monotonic, the theorem is proved.

14 Cangialosi, De Giacomo, De Masellis, Rosati

Based on the above theorem, we are able to derive our main result.

Theorem 4. Let A = 〈S, T , C〉 be an artifact such that all effect specifications in T
are weakly-acyclic, and let I0 be a data instance for A . Then, for every formula Φ of
µL, verifying that Φ holds in A with initial data instance I0 is decidable.

Proof. By Theorem 3 and Theorem 1, we can perform model checking of Φ on the
Skolem transition system for A and I0. Now, by Lemma 5, we have that all data in-
stances that can be assigned to the states of the Skolem transition system for A and I0
must be subsets of LI0 . And by Lemma 6, we get that LI0 has a finite cardinality. This
implies that Skolem transition system is finite and Theorem 2 can be applied.

5 Conclusions

In this paper we have introduced conjunctive artifact-based services, a class of services
which pose balanced attention to both data (here a full-fledged relational database) and
processes (acting on the database), and, through a suitable use of conjunctive queries in
specifying tasks pre- and post-conditions, guarantees decidability.

It is worth noting that decidability results for formalisms that fully take into account
both data and processes are rare. Here we mention three of them that are quite relevant
for artifact-centric approaches. The most closely related one is [12]), which shares the
general setting with our approach but differs in the conditions required to obtain de-
cidability. These are not based on conjunctive queries, but on some decidability results
of certain formulas of a first-order variant of linear time temporal logic [24]. Another
relevant decidability result is that of SPOCUS relational transducers [3], where decid-
ability is obtained through results on inflationary Datalog. Finally, the work on service
composition according to the COLOMBO model [4] is also related. There, decidability
is obtained through symbolic abstraction on data and the requirement that process are
input bounded (i.e., take only a bounded number of new values (similar to our nulls)
taken from input). The result presented here is not subsumed by (nor subsumes) any of
the above results. But actually opens a new lode for research in the area, based on the
connection with the theory of dependencies in databases that has been so fruitful in data
exchange and data integration in recent years [14, 17].

Acknowledgments The authors would like to thank Diego Calvanese and Yves Lesperance for
interesting discussions on the paper. This work has been supported by the EU Project FP7-ICT
ACSI (257593).

References

1. S. Abiteboul, P. Bourhis, A. Galland, and B. Marinoiu. The axml artifact model. In TIME,
pages 11–17, 2009.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.
3. S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational transducers for electronic

commerce. J. Comput. Syst. Sci., 61(2):236–269, 2000.
4. D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic Composition

of Transition-based Semantic Web Services with Messaging. In Proc. of VLDB 2005, 2005.
5. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards Formal Analysis of

Artifact-Centric Business Process Models. In Proc. of BPM’07, pages 288–304, 2007.

Conjunctive Artifact-Centric Services 15

6. K. Bhattacharya, R. Guttman, K. Lyman, F. F. H. III, S. Kumaran, P. Nandi, F. Y. Wu,
P. Athma, C. Freiberg, L. Johannsen, and A. Staudt. A model-driven approach to industrial-
izing discovery processes in pharmaceutical research. IBM Systems Journal, 44(1):145–162,
2005.

7. J. Bradfield and C. Stirling. Modal mu-calculi. In Handbook of Modal Logic, volume 3,
pages 721–756. Elsevier, 2007.

8. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90, 1977.

9. K. L. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, 1977.
10. E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. The MIT Press, Cambridge,

MA, USA, 1999.
11. D. Cohn and R. Hull. Business artifacts: A data-centric approach to modeling business

operations and processes. IEEE Data Eng. Bull., 32(3):3–9, 2009.
12. A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. Automatic Verification of Data-Centric Busi-

ness Processes . In Proc. of ICDT 2009, 2009.
13. E. A. Emerson. Model checking and the mu-calculus. In Descriptive Complexity and Finite

Models, pages 185–214, 1996.
14. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and query

answering. Theor. Comput. Sci., 336(1):89–124, 2005.
15. C. Fritz, R. Hull, and J. Su. Automatic construction of simple artifact-based business pro-

cesses. In ICDT, pages 225–238, 2009.
16. R. Hull. Artifact-centric business process models: Brief survey of research results and chal-

lenges. In OTM Conferences, pages 1152–1163, 2008.
17. M. Lenzerini. Data Integration: A Theoretical Perspective. In Proc. of PODS 2002, pages

233–246, 2002.
18. D. C. Luckham, D. M. R. Park, and M. Paterson. On formalised computer programs. J.

Comput. Syst. Sci., 4(3):220–249, 1970.
19. R. Milner. An algebraic definition of simulation between programs. In Proc. of IJCAI, pages

481–489, 1971.
20. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Syst. J., 42(3):428–445, 2003.
21. D. Park. Finiteness is mu-ineffable. Theor. Comput. Sci., 3(2):173–181, 1976.
22. R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dy-

namical Systems. MIT Press, September 2001.
23. S. Sohrabi, N. Prokoshyna, and S. A. McIlraith. Web service composition via generic proce-

dures and customizing user preferences. In International Semantic Web Conference, pages
597–611, 2006.

24. M. Spielmann. Verification of relational transducers for electronic commerce. J. Comput.
Syst. Sci., 66(1):40–65, 2003.

25. A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific J. of Mathemat-
ics, 5(2):285309, 1955.

26. W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer. Proclets: A framework
for lightweight interacting workflow processes. Int. J. Cooperative Inf. Syst., 10(4):443–481,
2001.

