Robotics 2

Visual servoing

Prof. Alessandro De Luca
Visual servoing

- **objective**

 use information acquired by vision sensors (cameras) for feedback control of the pose/motion of a robot (or of parts of it)

- **data acquisition** ~ human eye, with very large information content in the acquired images

- difficult to extract essential data, nonlinear perspective transformations, high sensitivity to ambient conditions (lightening), noise
Some applications

- automatic navigation of robotic systems (agriculture, automotive)
- surveillance
- bio-motion synchronization (surgical robotics)
Image processing

- real time extraction of characteristic parameters useful for robot motion control
 - features: points, area, geometric center, higher-order moments, ...

- low-level processing
 - binarization (threshold on grey levels), equalization (histograms), edge detection, ...

- segmentation
 - based on regions (possibly in binary images)
 - based on contours

- interpretation
 - association of characteristic parameters (e.g., texture)
 - problem of correspondence of points/characteristics of objects in different images (stereo or on image flows)
Configuration of a vision system

- one, two, or more cameras
 - grey-level or color
- 3D/stereo vision
 - obtained even with a single (moving) camera, with the object taken from different (known) points of view
- camera positioning
 - fixed (eye-to-hand)
 - mounted on the manipulator (eye-in-hand)
- robotized vision heads
 - motorized (e.g., stereo camera on humanoid head or pan-tilt camera on Magellan mobile robot)
Camera positioning

eye-in-hand

eye-to-hand
Vision for assembly

PAPAS-DLR system (eye-in-hand, hybrid force-vision)

robust w.r.t. motion of target objects
Indirect/external visual servoing

vision system provides set-point references to a Cartesian motion controller
- “easy” control law (same as without vision)
- appropriate for relatively slow situations (control sampling $f = 1/T < 50\text{Hz}$)
Direct/internal visual servoing

Replace Cartesian controller with one based on vision that directly computes joint reference commands:

- Control law is more complex (involves robot kinematics/dynamics)
- Preferred for fast situations (control sampling $f = 1/T > 50$Hz)
Classification of visual servoing schemes

- **position-based visual servoing (PBVS)**
 - Information extracted from images (features) is used to reconstruct the current 3D pose (pose/orientation) of an object.
 - Combined with the knowledge of a desired 3D pose, we generate a Cartesian pose error signal that drives the robot to the goal.

- **image-based visual servoing (IBVS)**
 - Error is computed directly on the values of the features extracted on the 2D image plane, without going through a 3D reconstruction.
 - The robot should move so as to bring the current image features (what it "sees" with the camera) to their desired values.

- Some mixed schemes are possible (e.g., 2½D methods)
Comparison between the two schemes

- **position-based visual servoing (PBVS)**

 ![Diagram of PBVS](image)

 - Current image
 - 3D information
 - 3D reconstruction
 - Current 3D pose
 - Desired 3D pose
 - 3D Cartesian error
 - 3D Cartesian error driving the robot

- **image-based visual servoing (IBVS)**

 ![Diagram of IBVS](image)

 - Current image
 - Desired image
 - 2D error in the image space
 - Motion commands to the robot
 - Processing
PBVS architecture

here, we consider only Cartesian commands of the kinematic type

highly sensitive to camera calibration parameters
Examples of PBVS

eye-to-“robot” (SuperMario)

position/orientation of the camera and scene geometry

known a priori!

eye-in-hand (Puma robot)

position and orientation of the robot (with mobile or fixed base)
IBVS architecture

control law in the image plane

feature extraction

$\star \frac{\%}{\%}$

almost insensitive to intrinsic/extrinsic camera calibration parameters

here, we consider only Cartesian commands of the kinematic type
An example of IBVS

here, the features are points (selected from the given set, or in suitable combinations)

desired feature positions

current feature positions

the error in the image plane (task space!) drives/controls the motion of the robot
PBVS vs IBVS

PBVS = position-based visual servoing

IBVS = image-based visual servoing

F. Chaumette, INRIA Rennes

reconstructing the instantaneous (relative) 3D pose of the object

using (four) point features extracted from the 2D image

...and intermediate 2½-D visual servoing...
Steps in an IBVS scheme

- **image acquisition**
 - frame rate, delay, noise, ...

- **feature extraction**
 - with image processing techniques (it could be a difficult and time consuming step!)

- **comparison** with “desired” feature values
 - definition of an error signal in the image plane

- **generation of motion of the camera/robot**
 - perspective transformations
 - differential kinematics of the manipulator
 - control laws of kinematic (most often) or dynamic type (e.g., PD + gravity cancelation --- see reference textbook)
Image processing techniques

- Binarization in RGB space
- Erosion and dilation
- Binarization in HSV space
- Dilation
What is a feature?

- **image feature**: any interesting **characteristic** or **geometric structure** extracted from the image/scene
 - points
 - lines
 - ellipses (or any other 2D contour)

- **feature parameter(s)**: any **numerical quantity** associated to the selected feature in the image plane
 - coordinates of a point
 - angular coefficient and offset of a line
 - center and radius of a circle
 - area and center of a 2D contour
 - generalized **moments** of an object in the image
 - can also be defined so as to be scale- and rotation-invariant
Example of IBVS using moments

- avoids the problem of “finding correspondences” between points
- however, it is not easy to control the motion of all 6 dofs of the camera when using only moments as features
Camera model

- set of **lenses** to focus the incoming light
 - (converging) thin lenses
 - pinhole approximation
 - catadioptric lens or systems (combined with mirrors)
- matrix of light sensitive elements (pixels in image plane), possibly selective to RGB colors ~ human eye
- **frame grabber** “takes shots”: an electronic device that captures individual, digital still frames as output from an analog video signal or a digital video stream
 - board + software on PC
 - **frame rate** = output frequency of new digital frames
 - it is useful to randomly access a subset (area) of pixels
Thin lens camera model

- geometric/projection optics
- rays parallel to the optical axis are deflected through a point at distance \(\lambda \) (focal length)
- rays passing through the optical center \(O \) are not deflected

fundamental equation of a thin lens

\[
\frac{1}{Z} + \frac{1}{z} = \frac{1}{\lambda} \quad \text{(dioptric (optical) power)}
\]

proof? left as exercise ...
Pinhole camera model

- when thin lens wideness is neglected
- all rays pass through optical center
- from the relations on similar triangles
 one gets the perspective equations

\[u = \lambda \frac{X}{Z} \]
\[v = \lambda \frac{Y}{Z} \]

to obtain these from discrete pixel values, an offset and a scaling factor should be included in each direction

sometimes normalized values \((u', v')\) are used (dividing by the focal length)

with

\[P = (X, Y, Z) \]
\[p = (u, v, \lambda) \]

Cartesian point (in camera frame)

representative point on the image plane
Reference frames of interest

- **absolute reference frame**
 \[\mathcal{F}_0 : \{O, \overrightarrow{X}_0, \overrightarrow{Y}_0, \overrightarrow{Z}_0\} \]

- **camera reference frame**
 \[\mathcal{F}_C : \{O_C, \overrightarrow{X}_C, \overrightarrow{Y}_C, \overrightarrow{Z}_C\} \]

- **image plane reference frame**
 \[\mathcal{F}_I : \{O_I, \overrightarrow{u}, \overrightarrow{v}\} \]

- **position/orientation of \(\mathcal{F}_C \) w.r.t. \(\mathcal{F}_0 \)**
 \[(T, R) \]
 (translation, rotation)
Interaction matrix

given a set of feature(s) parameters \(f = [f_1 \ldots f_k]^T \in \mathbb{R}^k \)

we look for the (kinematic) differential relation between motion imposed to the camera and motion of features on the image plane

\[
\dot{f} = J(\cdot) \begin{bmatrix} V \\ \Omega \end{bmatrix}
\]

\((V, \Omega) \in \mathbb{R}^6\) is the camera linear/angular velocity, a vector expressed in \(\mathcal{F}_C\)

\(J(\cdot)\) is a \(k \times 6\) matrix, known as interaction matrix

in the following, we consider mainly point features

- other instances (areas, lines, ...) can be treated as extensions of the presented analysis
Computing the interaction matrix
point feature, pinhole model

- from the perspective equations $u = \lambda \frac{X}{Z}, \ v = \lambda \frac{Y}{Z}$, we have

$$\begin{bmatrix}
\dot{u} \\
\dot{v}
\end{bmatrix} = \begin{bmatrix}
\frac{\lambda}{Z} & 0 & -\frac{u}{Z} \\
0 & \frac{\lambda}{Z} & -\frac{v}{Z}
\end{bmatrix} \begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{bmatrix} = J_1(u, v, \lambda) \begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{bmatrix}$$

- the velocity $(\dot{X}, \dot{Y}, \dot{Z})$ of a point P in frame \mathcal{F}_C is actually due to the roto-translation (V, Ω) of the camera (P is assumed fixed in \mathcal{F}_0)

- kinematic relation between $(\dot{X}, \dot{Y}, \dot{Z})$ and (V, Ω)

$$\begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{bmatrix} = -V - \Omega \times \begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix}$$

Note: ALL quantities are expressed in the camera frame \mathcal{F}_C without explicit indication of subscripts
the last equation can be expressed in matrix form

\[
\begin{bmatrix}
\dot{X} \\
\dot{Y} \\
\dot{Z}
\end{bmatrix} =
\begin{bmatrix}
-1 & 0 & 0 & 0 & -Z & Y \\
0 & -1 & 0 & Z & 0 & -X \\
0 & 0 & -1 & -Y & X & 0
\end{bmatrix}
\begin{bmatrix}
V \\
\Omega
\end{bmatrix} = J_2(X, Y, Z)
\begin{bmatrix}
V \\
\Omega
\end{bmatrix}
\]

combining things, the interaction matrix for a point feature is

\[
\begin{bmatrix}
\dot{u} \\
\dot{v}
\end{bmatrix} = J_1J_2
\begin{bmatrix}
V \\
\Omega
\end{bmatrix} =
\begin{bmatrix}
-\frac{\lambda}{Z} & 0 & \frac{uv}{\lambda} & -\left(\lambda + \frac{u^2}{\lambda}\right) & v \\
0 & -\frac{\lambda}{Z} & \frac{v^2}{\lambda} & -\frac{uv}{\lambda} & -u
\end{bmatrix}
\begin{bmatrix}
V \\
\Omega
\end{bmatrix}
\]

\[
= J_p(u, v, Z)
\begin{bmatrix}
V \\
\Omega
\end{bmatrix}
\]

here, \(\lambda \) is assumed to be known

\[p = \text{point (feature)} \]
the interaction matrix in the map

\[
\begin{bmatrix}
\dot{u} \\
\dot{v}
\end{bmatrix} = J_p(u, v, Z) \begin{bmatrix}
V \\
\Omega
\end{bmatrix}
\]

- depends on the actual value of the feature and on its depth \(Z\)
- since \(\dim \ker J_p = 4\), there exist \(\infty^4\) motions of the camera that are unobservable (for this feature) on the image
 - for instance, a translation along the projection ray
- when more point features are considered, the associated interaction matrices are stacked one on top of the other
 - \(p\) point features: the interaction matrix is \(k \times 6\), with \(k = 2p\)
Other examples of interaction matrices

- **distance between two point features**

 \[d = \sqrt{(u_1 - u_2)^2 + (v_1 - v_2)^2} \]

 \[d = \frac{1}{d} \begin{bmatrix} u_1 - u_2 & v_1 - v_2 & u_2 - u_1 & v_2 - v_1 \end{bmatrix} \begin{bmatrix} \dot{u}_1 \\ \dot{v}_1 \\ \dot{u}_2 \\ \dot{v}_2 \end{bmatrix} \]

 \[= J_d(u_1, u_2, v_1, v_2) \begin{bmatrix} J_{p1}(u_1, v_1, Z_1) \\ J_{p2}(u_2, v_2, Z_2) \end{bmatrix} \begin{bmatrix} V \\ \Omega \end{bmatrix} \]

- **image moments**

 \[m_{ij} = \int_{\mathcal{R}(t)} x^i y^j dxdy \]

 - useful for representing also qualitative geometric information (area, center, orientation of an approximating ellipse, ...)
 - by using Green formulas and the interaction matrix of a generic point feature

 \[\dot{m}_{ij} = L_{ij} \begin{bmatrix} V \\ \Omega \end{bmatrix} \]

IBVS with straight lines as features

F. Chaumette, INRIA Rennes
Robot differential kinematics

- **eye-in-hand** case: camera is mounted on the end-effector of a manipulator arm (with fixed base or on a wheeled mobile base)
- the motion \((V, \Omega)\) to be imposed to the camera coincides with the desired **end-effector linear/angular velocity** and is realized by choosing the manipulator **joint velocity** (or, more in general, the feasible velocity commands of a mobile manipulator)

\[
\begin{pmatrix}
V \\
\Omega
\end{pmatrix} = J_m(q)\dot{q} = J_m(q)u
\]

for consistency with the previous interaction matrix, also these Jacobians must be expressed in the camera frame \(F_C\)

\[
\Omega = \frac{\partial}{\partial q} = \frac{\partial}{\partial q} (q)
\]

Geometric Jacobian of a manipulator ... or the NMM Jacobian of a mobile manipulator

with \(q \in \mathbb{R}^n\) being the robot configuration variables

- in general, an **hand-eye calibration** is needed for this Jacobian
combining the step involved in the passage from the velocity of point features on the image plane to the joint velocity/feasible velocity commands of the robot, we finally obtain

\[\dot{f} = J_p(f, Z)J_m(q)u = J(f, Z, q)u \]

matrix \(J(f, Z, q) \) is called the Image Jacobian and plays the same role of a classical robot Jacobian.

we can thus apply one of the many standard kinematic (or even dynamics-based) control techniques for robot motion.

the (controlled) output is given by the vector of features in the image plane (the task space!)

the error driving the control law is defined in this task space.
Kinematic control for IBVS

- defining the error vector as \(e = f_d - f \), the general choice

\[
u = J^\# (f_d + ke) + (I - J^\# J)u_0
\]

- minimum norm solution

- term in \(\ker J \) does not “move” the features

will exponentially stabilize the task error to zero (up to singularities, limit joint range/field of view, features exiting the image plane, ...)

- in the redundant case, vector \(u_0 \) (projected in the image Jacobian null space) can be used for optimizing behavior/criteria

- the error feedback signal depends only on feature values

- there is still a dependence of \(J \) on the depths \(Z \) of the features
 - use the constant and “known” values at the final desired pose
 \[
 J(f, Z^*, q)
 \]
 - or, estimate on line their current values using a dynamic observer
Example with NMM

- mobile base (unicycle) + 3R manipulator
- eye-in-hand configuration

- 5 commands
 - linear and angular velocity of mobile base
 - velocities of the three manipulator joints

- task specified by 2 point features → 4 output variables

\[f = [f_{u1} f_{v1} f_{u2} f_{v2}]^T \]

- 5 - 4 = 1 degree of redundancy (w.r.t. the task)
Simulation

- simulation in Webots
- current value of Z is supposed to be known
- diagonal task gain matrix K (decoupling!)
- “linear paths” of features motion on the image plane

view from camera

processed image

behavior of the 2 features

Robotics 2
IBVS control with Task Sequencing

- approach: regulate only one (some) feature at the time, while keeping “fixed” the others by unobservable motions in the image plane
- Image Jacobians of single point features (e.g., \(p = 2 \))
 \[
 \dot{f}_1 = J_1 u, \quad \dot{f}_2 = J_2 u
 \]
- the first feature \(f_1 \) is regulated during a first phase by using
 \[
 u = J_1^\# k_1 e_1 + (I - J_1^\# J_1) u_0
 \]
- feature \(f_2 \) is then regulated by a command in the null-space of the first task
 \[
 u = (I - J_1^\# J_1)J_2^T k_2 e_2
 \]
- in the first phase there are two (more) degrees of redundancy w.r.t. the “complete” case, which can be used, e.g., for improving robot alignment to the target
- if the complete case is not redundant: singularities are typically met without Task Sequencing, but possibly prevented with TS ...
Simulation with TS scheme

mobile base (unicycle) + polar 2R arm: Image Jacobian is square (4×4)

- point feature 1 (regulated in first phase)
- point feature 2 (in second phase)

behavior of the 2 features

- simulation in Webots
- current value of Z is supposed to be known
Experiments

Magellan (unicycle) + pan-tilt camera (same mobility of a polar 2R robot)

- comparison between Task Priority (TP) and Task Sequencing (TS) schemes
- both can handle singularities (of Image Jacobian) that are possibly encountered
- camera frame rate = 7 Hz

Video attachment to ICRA’08 paper

Visual Servoing with Exploitation of Redundancy: An Experimental Study

A. De Luca M. Ferri G. Oriolo P. Robuffo Giordano

Dipartimento di Informatica e Sistemistica
Università di Roma “La Sapienza”

video
In many practical cases...

- the uncertainty in a number of relevant data may be large
 - focal length λ (intrinsic camera parameters)
 - hand-eye calibration (extrinsic camera parameters)
 - depth Z of point features
 -
- one can only compute an approximation of the Image Jacobian (both in its interaction matrix part, as well as in the robot Jacobian part)
- in the closed loop, error dynamics on features becomes
 \[\dot{e} = -J \hat{J}^\# Ke \]
 - ideal case: $JJ^\# = I$
 - real case: $JJ^\# \neq I$
- it is possible to show that a sufficient condition for local convergence of the error to zero is
 \[JJ^\# > 0 \]
Approximate Image Jacobian

- use a constant Image Jacobian $\hat{J}(Z^*)$ that is computed at the desired target s^* (with a known, fixed depth Z^*)

\[
\dot{q} = J^#(Z)Ke
\]

\[
\dot{q} = \hat{J}^#(Z^*)Ke
\]

video

F. Chaumette, INRIA Rennes
An observer of the depth Z

- it is possible to estimate on line the current value (possibly time-varying) of the depth Z, for each considered point feature, using a dynamic observer

- define $x = (u \ v \ 1/Z)^T$, $\hat{x} = (\hat{u} \ \hat{v} \ 1/\hat{Z})^T$ as current state and estimated state, and $y = (u \ v)^T$ as measured output

- a (nonlinear) observer of x with input $u_c = (V \ \Omega)^T$

 \[
 \dot{\hat{x}} = \alpha(\hat{x}, y)u_c + \beta(\hat{x}, y, u_c)
 \]

 guarantees $\lim_{t \to \infty} ||x(t) - \hat{x}(t)|| = 0$ provided that

 - linear velocity of the camera is not zero
 - the linear velocity vector is not aligned with the projection ray of the considered point feature

 \Rightarrow these are persistent excitation conditions (\sim observability conditions)
Block diagram of the observer

commands (input) to the camera/E-E

V, Ω

Camera system with point feature

measures (output) in the image plane

Z

\hat{Z}

$e = f - \hat{f}$

estimation error
Results on the estimation of Z

real and estimated initial state

$\begin{align*}
 x(t_0) &= [10 \ -10 \ 2]^T \\
 \hat{x}(t_0) &= [10 \ -10 \ 1]^T
\end{align*}$

open-loop commands

$\begin{align*}
 v_x(t) &= 0.1 \cos 2\pi t \\
 v_z(t) &= 0.5 \cos \pi t \\
 \omega_x(t) &= 0.6 \cos \pi / 2 t \\
 \omega_z(t) &= 1
\end{align*}$

estimation errors $e(t)$

$Z(t)$ and $\hat{Z}(t)$
Simulation of the observer with stepwise displacements of the target

The crosshair represents the estimated value of the depth Z
the depth observer can be easily integrated on line with any IBVS control scheme
Experimental set-up

- visual servoing with fixed camera on a skid-steering mobile robot
- very rough eye-robot calibration
- unknown depths of target points (estimated on line)

a “virtual” 5th feature is also used as the average of the four point features
Experiments

- motion of features on the image plane is not perfect...
- the visual regulation task is however correctly realized

external view
camera view

video (c/o Università di Siena)
Evolution of features

- motion of the 5 features (including the average point) in the image plane
- toward end, motion is \(\approx \) linear since the depth observers have already converged to the true values
- computed Image Jacobian is close to the actual one

\[
\hat{\mathbf{Z}} \rightarrow \mathbf{Z} \Rightarrow \hat{\mathbf{J}} \rightarrow \mathbf{J}
\]

- “true” initial and final depths

\[
Z(t_0) \approx 4 \, m \quad Z_d \approx 0.9 \, m
\]
Experiments with the observer

- the same task was executed with five different initializations for the depth observers, ranging between 0.9 m (= true depth in the final desired pose) and 16 m (much larger than in the true initial pose)

![Diagram showing the evolutions of the estimated depths for the 4 point features]

- initial values of depth estimates in the five tests

\[
\begin{align*}
\hat{Z}_1(t_0) &= 16 \text{ m} \\
\hat{Z}_2(t_0) &= 8 \text{ m} \\
\hat{Z}_3(t_0) &= 5 \text{ m} \\
\hat{Z}_4(t_0) &= 3 \text{ m} \\
\hat{Z}_5(t_0) &= 0.9 \text{ m}
\end{align*}
\]

- true depths in initial pose

\[Z(t_0) \simeq 4 \text{ m}\]

- true depths in final pose

\[Z_d \simeq 0.9 \text{ m}\]
Visual servoing with Kuka robot set-up

- **Kuka KR5 sixx R650 manipulator** (6 revolute joints, spherical wrist)
- **Point Grey Flea©2** CCD camera, eye-in-hand (mounted on a support)
- **Kuka KR C2sr** low-level controller (RTAI Linux and Sensor Interface)
- Image processing and visual servoing on **PC** (Intel Core2 @2.66GHz)
- High-level control data exchange every **12ms** (via UDP protocol)
Visual servoing with Kuka robot simulation and experiment with the observer

- depth estimation for a **fixed target** (single point feature)
- **simulation** using Webots first, then **experimental** validation
- **sinusoidal motion** of four robot joints so as to provide sufficient excitation

video

Webots simulation

Kuka experiment

- **true and estimated depth**
- norm of centering error of feature point [in pixels]
- goes to zero once control is activated

Robotics 2
Visual servoing with Kuka robot tracking experiment

- tracking a (slowly) time-varying target by visual servoing, including the depth observer (after convergence)
Gazing with humanoid head

stereo vision experiment

- gazing with a robotized head (7 joints, with \(n = 6 \) independently controlled) at a moving target (visual task dimension \(m = 2 \)), using redundancy (to keep a better posture and avoid joint limits) and a predictive feedforward

video (c/o Fraunhofer IOSB, Karlsruhe)

final head posture without and with self-motions