Optimal Control

Lecture

Prof. Daniela Iacoviello

Department of Computer, Control, and Management Engineering
Antonio Ruberti
Sapienza University of Rome
Schedule
Tuesday: 14:00-15:30 (A6)
Wednesday: 14:00-15:30 (A6)

Office hours: send me an e-mail

E-mail: iacoviello@dis.uniroma1.it

Grading
Project + oral exam

The exam must be concluded before the second part of Identification that will be held by Prof. Battilotti
Grading
Project+ oral exam

Example of project:
- Read a paper on an optimal control problem
- Study: background, motivations, model, optimal control, solution, results
- Simulations

You must give me, before the date of the exam:
- A .doc document
- A power point presentation
- Matlab simulation files

The exam must be concluded before the second part of Identification that will be held by Prof. Battilotti
Some projects studied in 2014-15

Application of Optimal Control to malaria: strategies and simulations

Performance compare between LQR and PID control of DC Motor

Optimal Low-Thrust LEO (low-Earth orbit) to GEO (geosynchronous-Earth orbit) Circular Orbit Transfer

Controllo ottimo di una turbina eolica a velocità variabile attraverso il metodo dell'inseguimento ottimo a regime permanente

Optimal Control in Dielectrophoresis

On the Design of P.I.D. Controllers Using Optimal Linear Regulator Theory

Rocket Railroad Car

.........
THESE SLIDES ARE NOT SUFFICIENT FOR THE EXAM: YOU MUST STUDY ON THE BOOKS

Part of the slides has been taken from the References indicated below
References

L. Evans, *An introduction to mathematical optimal control theory*, 1983

How, Jonathan, *Principles of optimal control*, Spring 2008. (MIT OpenCourseWare: Massachusetts Institute of Technology). License: Creative Commons BY-NC-SA.
Course outline

• Introduction to optimal control
• Nonlinear optimization
• Dynamic programming
• Calculus of variations
• Calculus of variations and optimal control
Course outline

- **Introduction to optimal control**
- Nonlinear optimization
- Dynamic programming
- Calculus of variations
- Calculus of variations and optimal control
First course on linear systems (free evolution, transition matrix, gramian matrix,...)
Notations

\[x(t) \in \mathbb{R}^n \quad \text{State variable} \]

\[u(t) \in \mathbb{R}^p \quad \text{Control variable} \]

\[f : \mathbb{R}^n \times \mathbb{R}^p \times \mathbb{R} :\rightarrow \mathbb{R} \]

Function \(\mathcal{C}^2 \) (function with second derivative continuous a.e.)
Introduction

Optimal control is one particular branch of modern control that sets out to provide analytical designs of a special appealing type. The system that is the end result of an optimal design is supposed to be the best possible system of a particular type.

A cost index is introduced
Introduction

Linear optimal control is a special sort of optimal control:

✓ the plant that is controlled is assumed linear
✓ the controller is constrained to be linear

Linear controllers are achieved by working with quadratic cost indices
Introduction

Advantages of linear optimal control

✓ Linear optimal control may be applied to nonlinear systems
✓ Nearly all linear optimal control problems have computational solutions
✓ The computational procedures required for linear optimal design may often be carried over to nonlinear optimal problems
History

1696: THE BIRTH OF OPTIMAL CONTROL

Jan C. Willems
Department of Mathematics
University of Groningen

Proceedings of the 35th
Conference on Decision and Control
Kobe, Japan • December 1996
In 1696 Bernoulli posed the **Brachystochrone problem** to his contemporaries: “it seems to be the First problem which explicitly dealt with optimally controlling the path or the behaviour of a dynamical system”.
Motivations

Example 1 (Evans 1983)
Reproductive strategies in social insects
Let us consider the model describing how social insects (for example bees) interact:

\[w(t) \] represents the number of workers at time \(t \)
\[q(t) \] represents the number of queens
\[u(t) \] represents the fraction of colony effort devoted to increasing work force
\[T \] length of the season
Death rate

\[\dot{w}(t) = -\mu w(t) + b s(t)u(t)w(t) \]

\[w(0) = w_0 \]

Known rate at which each worker contributes to the bee economy

\[\dot{q}(t) = -\nu q(t) + c(1-u(t))s(t)w(t) \]

\[q(0) = q_0 \]

Evolution of the worker population

Evolution of the Population of queens

Constraint for the control: \[0 \leq u(t) \leq 1 \]
The bees goal is to find the control that maximizes the number of queens at time T:

$$J(u(t)) = q(T)$$

The solution is a \textit{bang-bang control}.
Motivations

Example 2 (Evans 1983...and everywhere!)

A moon lander

Aim: bring a spacecraft to a soft landing on the lunar surface, *using the least amount of fuel*

- $h(t)$ represents the **height** at time t
- $v(t)$ represents the **velocity** = $\dot{h}(t)$
- $m(t)$ represents the **mass** of spacecraft
- $u(t)$ represents **thrust** at time t

We assume $0 \leq u(t) \leq 1$
Consider the Newton’s law: \(m\ddot{h}(t) = -gm + u \)

\[
\dot{v}(t) = -g + \frac{u(t)}{m(t)} \\
\dot{h}(t) = v(t) \\
\dot{m}(t) = -ku(t) \quad h(t) \geq 0 \quad m(t) \geq 0
\]

We want to minimize the amount of fuel that is maximize the amount remaining once we have landed

where

\(\mathcal{I} \) is the first time

\[
h(\mathcal{I}) = 0 \quad v(\mathcal{I}) = 0
\]
Analysis of linear control systems

Essential components of a control system
✓ The plant
✓ One or more sensors
✓ The controller
Analysis of linear control systems

Feedback: the actual operation of the control system is compared to the desired operation and the input to the plant is adjusted on the basis of this comparison.

Feedback control systems are able to operate satisfactorily despite adverse conditions, such as disturbances and variations in plant properties.
Course outline

• Introduction to optimal control

• **Nonlinear optimization**

• Dynamic programming

• Calculus of variations

• Calculus of variations and optimal control
Definitions

Consider a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$

And $D \subseteq \mathbb{R}^n$

$\| \cdot \|$ denotes the Euclidean norm

A point $x^* \in D$ is a local minimum of f over $D \subseteq \mathbb{R}^n$

If $\exists \, \varepsilon > 0$ such that for all $x \in D$ satisfying $\| x - x^* \| < \varepsilon$

\Rightarrow

$f(x^*) \leq f(x)$
Definitions

Consider a function \(f : R^n \rightarrow R \)

And \(D \subseteq R^n \)

\(\| \cdot \| \) denotes the Euclidean norm

A point \(x^* \in D \) is a **strict local minimum** of \(f \) over \(D \subseteq R^n \)

If \(\exists \ \varepsilon > 0 \) such that for all \(x \in D \) satisfying \(|x - x^*| < \varepsilon \)

\[f(x^*) < f(x), \ \forall x \neq x^* \]
Definitions

Consider a function $f : \mathbb{R}^n \rightarrow \mathbb{R}$

And $D \subseteq \mathbb{R}^n$

$\| \cdot \|$ denotes the Euclidean norm.

A point $x^* \in D$ is a **global minimum** of f over $D \subseteq \mathbb{R}^n$

If

$\text{for all } x \in D$

\Rightarrow

$f(x^*) \leq f(x)$
Definitions

The notions of a **local/strict/global maximum** are defined similarly.

If a point is either a maximum or a minimum is called an **extremum**.
Unconstrained optimization - first order necessary conditions

All points x sufficiently near x^* in \mathbb{R}^n are in D

Assume $f \in C^1$ and x^* its local minimum. Let $d \in \mathbb{R}^n$ an arbitrary vector.

Being in the unconstrained case:

$x^* + \alpha d \in D \ \forall \alpha \in \mathbb{R} \text{ close enough to } 0$

Let’s consider:

$g(\alpha) := f(x^* + \alpha d)$

0 is a minimum of g
Unconstrained optimization - first order necessary conditions

First order Taylor expansion of g around $\alpha = 0$

$$g(\alpha) = g(0) + g'(0)\alpha + o(\alpha), \quad \lim_{\alpha \to 0} \frac{o(\alpha)}{\alpha} = 0$$

$g'(0) = 0$

Proof: assume $g'(0) \neq 0$

$$\exists \varepsilon > 0 \text{ small enough so that }$$

$$\text{for } |\alpha| < \varepsilon \quad |o(\alpha)| < |g'(0)\alpha|$$

For these values of α

$$g(\alpha) - g(0) < g'(0)\alpha + |g'(0)\alpha|$$
Unconstrained optimization - first order necessary conditions

If we restrict \(\alpha \) to have the opposite sign to \(g'(0) \)

\[
g(\alpha) - g(0) < g'(0)\alpha + |g'(0)\alpha|
\]

\[\Rightarrow g(\alpha) - g(0) < 0\]

contradiction.

\[
g'(\alpha) = \nabla f(x^* + \alpha d) \cdot d \quad \text{where} \quad \nabla f := \begin{pmatrix} f_{x_1} & \cdots & f_{x_n} \end{pmatrix}^T \quad \text{is the gradient of} \quad f
\]

\[\Rightarrow g'(0) = \nabla f(x^*) \cdot d = 0\]

\(d \) was arbitrary

\[\nabla f(x^*) = 0\]

First order necessary condition for optimality
Unconstrained optimization - first order necessary conditions

A point x^* satisfying this condition is a **stationary point**
Unconstrained optimization - second order conditions

Assume \(f \in C^2 \) and \(x^* \) its local minimum. Let \(d \in \mathbb{R}^n \) an arbitrary vector.

Second order Taylor expansion of \(g \) around \(\alpha = 0 \)

\[
g(\alpha) = g(0) + g'(0)\alpha + \frac{1}{2} g''(0)\alpha^2 + o(\alpha^2),
\]

\[
\lim_{\alpha \to 0} \frac{o(\alpha^2)}{\alpha^2} = 0
\]

Since \(g'(0) = 0 \)

\[
g''(0) \geq 0
\]

Proof: suppose \(g''(0) < 0 \)

\[
\exists \varepsilon > 0 \text{ small enough so that }
\]

\[
\text{for } |\alpha| < \varepsilon \quad |o(\alpha^2)| < \frac{1}{2} |g''(0)|\alpha^2
\]
Unconstrained optimization - second order conditions

For these values of \(\alpha \)
\[
g(\alpha) - g(0) < 0
\]

contradiction

By differentiating both sides with respect to \(\alpha \)

\[
g'(\alpha) = \sum_{i=1}^{n} f_{x_i}(x^* + \alpha d)d_i
\]

\[
g''(\alpha) = \sum_{i,j=1}^{n} f_{x_ix_j}(x^* + \alpha d)d_i d_j
\]

\[
g''(0) = \sum_{i,j=1}^{n} f_{x_ix_j}(x^*)d_i d_j = d^T \nabla^2 f(x^*)d
\]

\[
\nabla^2 f = \begin{pmatrix}
 f_{x_1x_1} & \cdots & f_{x_1x_n} \\
 \vdots & \ddots & \vdots \\
 f_{x_nx_1} & \cdots & f_{x_nx_n}
\end{pmatrix}
\]

Hessian matrix
Unconstrained optimization - second order conditions

\[\nabla^2 f(x^*) \geq 0 \]

Second order necessary condition for optimality

Remark:
The second order condition distinguishes minima from maxima:

At a **local maximum** the Hessian must be **negative semidefinite**

At a **local minimum** the Hessian must be **positive semidefinite**
Let $f \in C^2$ and $\nabla f(x^*) = 0$ $\nabla^2 f(x^*) > 0$

x^* is a **strict local minimum** of f
A vector $d \in \mathbb{R}^n$ is a **feasible direction** at x^* if

$$x^* + \alpha d \in D \text{ for small enough } \alpha > 0$$

If D in not the entire \mathbb{R}^n then D is the **constraint set** over which f is being minimized.
Global minimum

Weierstrass Theorem

Let f be a *continuous function* and D a *compact set*

there exist a *global minimum* of f over D
Constrained optimization

Let $D \subset \mathbb{R}^n$, $f \in C^1$

Equality constraints $h(x) = 0$, $h : \mathbb{R}^p \to \mathbb{R}$, $h \in C^1$

Inequality constraints $g(x) \leq 0$, $g : \mathbb{R}^q \to \mathbb{R}$, $g \in C^1$

Regularity condition:

\[
\text{rank}\left\{ \left. \frac{\partial (h, g_a)}{\partial x} \right|_{x^*} \right\} = p + q_a
\]

where g_a are the active constrain of g with dimension q_a

Lagrangian function $L(x, \lambda_0, \lambda, \mu) = \lambda_0 f(x) + \lambda^T h(x) + \eta^T g(x)$

If $\lambda_0 \neq 0$ the stationary point x^* is called normal and we can assume $\lambda_0 = 1$.

Prof.Daniela Iacoviello- Optimal Control
Constrained optimization

From now on $\lambda_0 = 1$ and therefore the Lagrangian is

$$L(x, \lambda, \mu) = f(x) + \lambda^T h(x) + \eta^T g(x)$$

If there are only equality constraints the λ_i are called Lagrange multipliers

The inequality multipliers are called Kuhn – Tucker multipliers
Constrained optimization

First order necessary conditions for constrained optimality:

Let \(x^* \in D \) and \(f, h, g \in C^1 \)

The necessary conditions for \(x^* \) to be a constrained local minimum are

\[
\begin{align*}
\frac{\partial L}{\partial x} \bigg|_{x^*}^T &= 0^T \\
\eta_i g_i (x^*) &= 0, \ \forall i \\
\eta_i &\geq 0 \quad \forall i
\end{align*}
\]

If the functions \(f \) and \(g \) are convex and the functions \(h \) are linear these conditions are necessary and sufficient!!!
Constrained optimization

Second order **sufficient conditions** for constrained optimality:

Let \(x^* \in D \) and \(f, h, g \in C^2 \) and assume the conditions

\[
\frac{\partial L}{\partial x} \bigg|^{x^*}_T = 0^T \quad \eta_i g_i(x^*) = 0, \eta_i \geq 0 \quad \forall i
\]

\(x^* \) is a strict constrained local minimum if

\[
d^T \frac{\partial^2 L}{\partial x^2} \bigg|^{x^*}_d > 0 \quad \forall d \text{ such that } \frac{dh_i(x)}{dx} \bigg|^{x^*}_d \cdot d = 0, \quad i = 1, \ldots, p
\]
Function spaces

Functional $J : V \rightarrow R$

Vector space V, $A \subseteq V$

\[z^* \in A \] is a local minimum of J over A if there exists an $\varepsilon > 0$ such that for all $z \in A$ satisfying $\|z - z^*\| < \varepsilon$

\[\Rightarrow J(z^*) \leq J(z) \]
Consider function in V of the form $z + \alpha \eta$, $\eta \in V$, $\alpha \in \mathbb{R}$

The first variation of J at z is the linear function $\delta J \big|_z : V \to \mathbb{R}$ such that $\forall \alpha$ and $\forall \eta$

\[
J(z + \alpha \eta) = J(z) + \delta J \big|_z (\eta) \alpha + o(\alpha)
\]

First order necessary condition for optimality:
For all admissible perturbation we must have:

\[
\delta J \big|_{z^*}(\eta) = 0
\]
A quadratic form $\delta^2 J \bigg|_z : V \rightarrow R$ is the second variation of J at z if $\forall \alpha$ and $\forall \eta$ we have:

$$J(z + \alpha \eta) = J(z) + \delta J\bigg|_z (\eta)\alpha + \delta^2 J\bigg|_z (\eta)\alpha^2 + o(\alpha^2)$$

second order necessary condition for optimality: If $z^* \in A$ is a local minimum of J over $A \subset V$ for all admissible perturbation we must have:

$$\delta^2 J\bigg|_{z^*} (\eta) \geq 0$$
The Weierstrass Theorem is still valid

If J is a convex functional and $A \subset V$ is a convex set, a local minimum is automatically a global one and the first order condition are **necessary and sufficient condition** for a minimum.