Part I
- Ontology-based data management: The framework
- Queries in OBDM
- The nature of query answering in OBDM

Part II
- Ontology languages
- Modeling the domain through the ontology
- Modeling the mapping with the data sources

Part III
- Algorithms for query answering
- Beyond classical first-order queries
Outline

1. Algorithms for query answering
2. Beyond classical first-order queries
\(DL-Lite_{A,id} \) is the most expressive logic in the \(DL-Lite \) family.

Expressions in \(DL-Lite_{A,id} \):

\[
B \rightarrow A \mid \exists Q \mid \delta(U) \quad E \rightarrow \rho(U) \quad C \rightarrow B \mid \neg B \\
Q \rightarrow P \mid P^- \\
T \rightarrow \top_D \mid T_1 \mid \cdots \mid T_n
\]

Assertions in \(DL-Lite_{A,id} \):

\[
B \sqsubseteq C \quad (\text{concept inclusion}) \\
Q \sqsubseteq R \quad (\text{role inclusion}) \\
(id \ B \ \pi_1, \ldots, \pi_n) \quad (\text{identification assertions}) \\
(\text{funct} \ U) \quad (\text{attribute functionality})
\]

\[
E \sqsubseteq T \quad (\text{value-domain inclusion}) \\
U \sqsubseteq V \quad (\text{attribute inclusion}) \\
(\text{funct} \ Q) \quad (\text{role functionality})
\]

In identification and functional assertions, roles and attributes cannot specialized, and each \(\pi_i \) denotes a path (with at least one path with length 1), which is an expression built according to the following syntax rule:

\[
\pi \rightarrow S \mid B? \mid \pi_1 \circ \pi_2
\]
Semantics of DL-$Lite_{A, id}$

<table>
<thead>
<tr>
<th>Construct</th>
<th>Syntax</th>
<th>Example</th>
<th>Semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>atomic conc.</td>
<td>A</td>
<td>Doctor</td>
<td>$A^I \subseteq \Delta^I$</td>
</tr>
<tr>
<td>exist. restr.</td>
<td>$\exists Q$</td>
<td>$\exists \text{child}^-$</td>
<td>${d \mid \exists e. (d, e) \in Q^I}$</td>
</tr>
<tr>
<td>at. conc. neg.</td>
<td>$\neg A$</td>
<td>$\neg \text{Doctor}$</td>
<td>$\Delta^I \setminus A^I$</td>
</tr>
<tr>
<td>conc. neg.</td>
<td>$\neg \exists Q$</td>
<td>$\neg \exists \text{child}$</td>
<td>$\Delta^I \setminus (\exists Q)^I$</td>
</tr>
<tr>
<td>atomic role</td>
<td>P</td>
<td>child</td>
<td>$P^I \subseteq \Delta^I \times \Delta^I$</td>
</tr>
<tr>
<td>inverse role</td>
<td>P^-</td>
<td>child^-</td>
<td>${(o, o') \mid (o', o) \in P^I}$</td>
</tr>
<tr>
<td>role negation</td>
<td>$\neg Q$</td>
<td>$\neg \text{manages}$</td>
<td>$(\Delta^I \times \Delta^I) \setminus Q^I$</td>
</tr>
<tr>
<td>conc. incl.</td>
<td>$B \sqsubseteq C$</td>
<td>Father $\sqsubseteq \exists \text{child}$</td>
<td>$B^I \subseteq C^I$</td>
</tr>
<tr>
<td>role incl.</td>
<td>$Q \sqsubseteq R$</td>
<td>hasFather $\sqsubseteq \text{child}^-$</td>
<td>$Q^I \subseteq R^I$</td>
</tr>
<tr>
<td>funct. asser.</td>
<td>(funct Q)</td>
<td>(funct succ)</td>
<td>$\forall d, e, e'. (d, e) \in Q^I \land (d, e') \in Q^I \rightarrow e = e'$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$A(c)$</td>
<td>Father(bob)</td>
<td>$c^I \in A^I$</td>
</tr>
<tr>
<td>mem. asser.</td>
<td>$P(c_1, c_2)$</td>
<td>child(bob, ann)</td>
<td>$(c_1^I, c_2^I) \in P^I$</td>
</tr>
</tbody>
</table>

DL-$Lite_{A, id}$ (as all DLs of the DL-$Lite$ family) adopts the Unique Name Assumption (UNA), i.e., different individuals denote different objects.
Capturing basic ontology constructs in DL-Lite_A, id

<table>
<thead>
<tr>
<th>Construct</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA between classes</td>
<td>$A_1 \sqsubseteq A_2$</td>
</tr>
<tr>
<td>Disjointness between classes</td>
<td>$A_1 \sqsubseteq \neg A_2$</td>
</tr>
<tr>
<td>Domain and range of properties</td>
<td>$\exists P \sqsubseteq A_1 \quad \exists P^- \sqsubseteq A_2$</td>
</tr>
<tr>
<td>Mandatory participation ($\text{min card} = 1$)</td>
<td>$A_1 \sqsubseteq \exists P \quad A_2 \sqsubseteq \exists P^-$</td>
</tr>
<tr>
<td>Functionality of relations ($\text{max card} = 1$)</td>
<td>$\text{(funct } P\text{)} \quad \text{(funct } P^-\text{)}$</td>
</tr>
<tr>
<td>ISA between properties</td>
<td>$Q_1 \sqsubseteq Q_2$</td>
</tr>
<tr>
<td>Disjointness between properties</td>
<td>$Q_1 \sqsubseteq \neg Q_2$</td>
</tr>
</tbody>
</table>

Note 1: DL-Lite_A, id cannot capture completeness of a hierarchy. This would require disjunction (i.e., OR).

Note 2: DL-Lite_A, id can be extended to capture also min cardinality constraints ($A \sqsubseteq \leq n Q$), max cardinality constraints ($A \sqsubseteq \geq n Q$) [Artale et al, JAIR 2009], n-ary relations, and denial assertions (not considered here for simplicity).
Example of DL-$Lite_{A,id}$ ontology

Faculty ⊑ ∃ age
Faculty ⊑ $\exists \text{age}^-$ ⊑ xsd\:integer

(funct age)

Professor ⊑ Faculty
AssocProf ⊑ Professor
Dean ⊑ Professor
AssocProf ⊑ ¬Dean

Faculty ⊑ $\exists \text{worksFor}$
Faculty ⊑ $\exists \text{worksFor}^-$ ⊑ College
College ⊑ $\exists \text{work}$For

Dean ⊑ $\exists \text{isHeadOf}$
Dean ⊑ $\exists \text{isHeadOf}^-$ ⊑ College
College ⊑ $\exists \text{isHeadOf}$
College ⊑ $\exists \text{isHeadOf}^-$

∅ isHeadOf ⊑ worksFor
(funct isHeadOf)
(funct isHeadOf^-)

...
Possible approaches to satisfiability checking and query answering:

- the chase (used in database theory for reasoning about data dependencies [Maier 1983], and in data exchange for computing universal solutions [Fagin et al 2003], see [Greco et al 2012])
- resolution-based methods
- ...

None of the existing approaches directly works for our purpose.

⊑ So, we designed our own algorithm, called *PerfectRef*, implemented in our OBDM tool, **MASTRO**
We call

- **positive inclusions (PIs)** or **positive axioms** assertions of the form
 \[B_1 \sqsubseteq B_2, \quad Q_1 \sqsubseteq Q_2 \]

- **negative axioms** the other assertions, i.e.,

 - **negative inclusions (NIs)** assertions of the form
 \[B_1 \sqsubseteq \neg B_2, \quad Q_1 \sqsubseteq \neg Q_2 \]

 - **identification assertions**, i.e., assertions of the form
 \[(id B \pi_1, \ldots, \pi_n), (\texttt{funct } Q), (\texttt{funct } U) \]
Theorem

Let \(\mathcal{O} = \mathcal{O}_{\text{PI}} \cup \mathcal{O}_{\text{NI}} \cup \mathcal{O}_{\text{id}} \) be a TBox s.t.
- \(\mathcal{O}_{\text{PI}} \) is a set of PIs,
- \(\mathcal{O}_{\text{NI}} \) is a set of NIs,
- \(\mathcal{O}_{\text{id}} \) is a set of identification assertions.

Then

- There is a boolean query \(q_v \) such that \(\langle \mathcal{O}, S, \mathcal{M} \rangle \) is satisfiable if and only if \(\langle \mathcal{O}_{\text{PI}}, S, \mathcal{M} \rangle \not\models q_v \).
- For each \(S \) such that \(\langle \mathcal{O}, S, \mathcal{M} \rangle \) is satisfiable, and for each UCQ \(q \), we have that
 \[
 \text{cert}(q, \langle \mathcal{O}, S, \mathcal{M} \rangle) = \text{cert}(q, \langle \mathcal{O}_{\text{PI}}, S, \mathcal{M} \rangle).
 \]
To the aim of answering queries, from now on we assume that O contains only PIs. Also, we denote by A the ABox $M(S)$.

- There is a model $can(\langle O, A \rangle)$ of $\langle O, A \rangle$ such that, for each model M' of $\langle O, A \rangle$, there is a homomorphism from $can(\langle O, A \rangle)$ to M', i.e., a function h from the domain of $can(\langle O, A \rangle)$ to the domain of M' such that $a^{can(\langle O, A \rangle)} \in C^{can(\langle O, A \rangle)}$ implies $h(a)^{M'} \in C^{M'}$, and $a^{can(\langle O, A \rangle)}, b^{can(\langle O, A \rangle)} \in R^{can(\langle O, A \rangle)}$ implies $(h(a)^{M'}, h(b)^{M'}) \in R^{M'}$.

- In principle, $can(\langle O, A \rangle)$ can be constructed by means of a procedure, called chase, that starting from A, “apply” the various PIs, by adding the facts sanctioned by the PIs. In general, $can(\langle O, A \rangle)$ is infinite.

- Thus, instead of trying to build $can(\langle O, A \rangle)$, we adopt a top-down approach: by using O, we rewrite a CQ q into a UCQ q' in such a way that evaluating q' over A is equivalent to evaluate q over $can(\langle O, A \rangle)$ (keeping only answers constituted by constants).

Correctness of this procedure shows FOL-rewritability of query answering in $DL-Lite_{A,id}$.
Query answering in DL-$Lite_{A,id}$: Query rewriting (cont’d)

Intuition: Use the PIs as basic rewriting rules

\[q(x) \leftarrow \text{Professor}(x) \]

AssocProfessor \sqsubseteq Professor

as a logic rule: $\forall z \text{ AssocProfessor}(z) \rightarrow \text{Professor}(z)$

Basic rewriting step:

- **when** the atom unifies with the head of the rule (with mgu σ).
- **substitute** the atom with the body of the rule (to which σ is applied).

Towards the computation of the perfect rewriting, we add to the input query above the following query ($\sigma = \{z/x\}$)

\[q(x) \leftarrow \text{AssocProfessor}(x) \]

We say that the PI AssocProfessor \sqsubseteq Professor applies to the atom Professor(x).
Consider now the query

\[q(x) \leftarrow \text{teaches}(x, y) \]

\[\text{Professor} \sqsubseteq \exists \text{teaches} \]

as a logic rule:

\[\forall z \, \text{Professor}(z) \rightarrow \exists y \, \text{teaches}(z, y) \]

We add to the reformulation the query \((\sigma = \{z_1/x, z_2/y\})\)

\[q(x) \leftarrow \text{Professor}(x) \]
Analogously, for the query

$$q(x) \leftarrow \text{teaches}(x, \text{databases})$$

Professor $\sqsubseteq \exists$teaches

as a logic rule: $\forall z \ \text{Professor}(z) \rightarrow \exists y \ \text{teaches}(z, y)$

teaches(x, databases) does not unify with teaches(z, y), since the existentially quantified variable z_2 in the head of the rule does not unify with the constant databases.

In this case the PI does not apply to the atom teaches(x, databases).

The same holds for the following query, where y is distinguished

$$q(x, y) \leftarrow \text{teaches}(x, y)$$
Conversely, for the following query with join variables

\[q(x) \leftarrow \text{teaches}(x, y), \text{Course}(y) \]

\[
\text{Professor} \sqsubseteq \exists \text{teaches} \\
\text{as a logic rule: } \forall z \text{ Professor}(z) \rightarrow \exists y \text{ teaches}(z, y)
\]

The PI above does not apply to the atom \(\text{teaches}(x, y) \).

Conversely, the PI

\[
\exists \text{teaches}^- \sqsubseteq \text{Course} \\
\text{as a logic rule: } \forall z_1 \forall z_2 \text{ teaches}(z_1, z_2) \rightarrow \text{Course}(z_2)
\]

applies to the atom \(\text{Course}(y) \).

We add to the perfect rewriting the query \((\sigma = \{z_2/y\}) \)

\[q(x) \leftarrow \text{teaches}(x, y), \text{teaches}(z_1, y) \]
We now have the query

\[
q(x) \leftarrow \text{teaches}(x, y), \text{teaches}(z, y)
\]

The PI

\[
\text{Professor} \sqsubseteq \exists \text{teaches}
\]

as a logic rule:

\[
\forall z \text{Professor}(z) \rightarrow \exists y \text{teaches}(z, y)
\]

does not apply to \(\text{teaches}(x, y)\) nor \(\text{teaches}(z, y)\), since \(y\) is a join variable. However, we can transform the above query by unifying the atoms \(\text{teaches}(x, y), \text{teaches}(z, y)\). This rewriting step is called reduce, and produces the following query

\[
q(x) \leftarrow \text{teaches}(x, y)
\]

We can now apply the PI above \((\sigma\{z_1/x, z_2/y\})\), and add to the reformulation the query

\[
q(x) \leftarrow \text{Professor}(x)
\]
Answering by rewriting in $DL-Lite_{A,id}$: The algorithm

1. Rewrite the CQ q into a UCQs: apply to q in all possible ways the PIs in the TBox O.

2. Treat CQs as sets, so as to block infinite loops.

3. This corresponds to exploiting ISAs, role typings, and mandatory participations to obtain new queries that could contribute to the answer.

4. Unifying atoms can make applicable rules that could not be applied otherwise.
Algorithm $\text{PerfectRef}(q, \mathcal{O}_P)$

Input: conjunctive query q, set of DL-$\text{Lite}_{A,iid}$ PIs \mathcal{O}_P

Output: union of conjunctive queries PR

$PR := \{q\}$;

repeat

$PR' := PR$;

for each $q \in PR'$ do

(a) for each g in q do

for each PI I in \mathcal{O}_P do

if I is applicable to g

then $PR := PR \cup \{q[g/(g,I)]\}$

(b) for each g_1, g_2 in q do

if g_1 and g_2 unify

then $PR := PR \cup \{\tau(\text{reduce}(q, g_1, g_2))\}$;

until $PR' = PR$;

return PR
Answering by rewriting in DL-$Lite_{A,id}$: The algorithm

Theorem (Calvanese et al, JAR 2007)

The query resulting from the above process is a UCQ, and is the perfect rewriting $r_{q,O}$, i.e., evaluating $r_{q,O}$ over $M(S)$ computes the certain answers to q wrt $\langle O, S, M \rangle$.

Note that the same algorithm can be used to check satisfiability of $\langle O, S, M \rangle$, where answers to query q_v correspond to violations of negative inclusions.
Query answering in $DL-Lite_{A,id}$: Example

TBox: Professor $\sqsubseteq \exists$ teaches
 \exists teaches \sqsubseteq Course

Query: $q(x) \leftarrow$ teaches(x, y), Course(y)

Perfect Rewriting:
- $q(x) \leftarrow$ teaches(x, y), Course(y)
- $q(x) \leftarrow$ teaches(x, y), teaches(z, y)
- $q(x) \leftarrow$ teaches(x, z)
- $q(x) \leftarrow$ Professor(x)

$M(S)$: teaches(John, databases)
 Professor(Mary)

It is easy to see that the evaluation of $r_{q,\emptyset}$ over $M(S)$ in this case produces the set $\{John, Mary\}$.
\(n \) : query size
\(m \) : number of predicate symbols in \(\mathcal{O} \) or query \(q \)

The number of distinct conjunctive queries generated by the algorithm is less than or equal to \((m \times (n + 1)^2)^n \), which corresponds to the maximum number of executions of the repeat-until cycle of the algorithm.

Query answering for CQs and UCQs is:
- **PTime** in the size of \(\mathcal{TBox} \).
- **AC\(^0\)** in the size of the \(\mathcal{M}(S) \).
- Exponential in the size of the query.

Can we go beyond **\(DL-Lite_{A,id} \) **and remain in AC\(^0\)?

By adding essentially any other DL construct (without limitations) we lose these computational properties.
Beyond $DL-Lite_A,id$: results on data complexity

<table>
<thead>
<tr>
<th></th>
<th>Lhs</th>
<th>Rhs</th>
<th>Funct.</th>
<th>Prop. incl.</th>
<th>Data complexity of query answering</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$DL-Lite_A,id$</td>
<td>—</td>
<td>—</td>
<td>√</td>
<td>in AC^0</td>
</tr>
<tr>
<td>1</td>
<td>$A \vert \exists P.A$</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>$NLogSpace$-hard</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>$A \vert \forall P.A$</td>
<td>—</td>
<td>—</td>
<td>$NLogSpace$-hard</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>$A \vert \exists P.A$</td>
<td>√</td>
<td>—</td>
<td>$NLogSpace$-hard</td>
</tr>
<tr>
<td>4</td>
<td>$A \vert \exists P.A \land A_1 \land A_2$</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>$PTIME$-hard</td>
</tr>
<tr>
<td>5</td>
<td>$A \vert A_1 \land A_2$</td>
<td>$A \vert \forall P.A$</td>
<td>—</td>
<td>—</td>
<td>$PTIME$-hard</td>
</tr>
<tr>
<td>6</td>
<td>$A \vert A_1 \land A_2$</td>
<td>$A \vert \exists P.A$</td>
<td>√</td>
<td>—</td>
<td>$PTIME$-hard</td>
</tr>
<tr>
<td>7</td>
<td>$A \vert \exists P.A \land \exists P^-.A$</td>
<td>$A \vert \exists P$</td>
<td>—</td>
<td>—</td>
<td>$PTIME$-hard</td>
</tr>
<tr>
<td>8</td>
<td>$A \vert \exists P \land \exists P^-$</td>
<td>$A \vert \exists P \land \exists P^-$</td>
<td>√</td>
<td>√</td>
<td>$PTIME$-hard</td>
</tr>
<tr>
<td>9</td>
<td>$A \vert \neg A$</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>$coNP$-hard</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>$A \vert A_1 \lor A_2$</td>
<td>—</td>
<td>—</td>
<td>$coNP$-hard</td>
</tr>
<tr>
<td>11</td>
<td>$A \vert \forall P.A$</td>
<td>A</td>
<td>—</td>
<td>—</td>
<td>$coNP$-hard</td>
</tr>
</tbody>
</table>

- $DL-Lite_A,id$ is the most expressive DL of the $DL-Lite$ family
- $NLogSpace$ and $PTIME$ hardness holds already for instance checking.
- For $coNP$-hardness in line 10, a TBox with a single assertion $A_L \sqsubseteq A_T \sqcup A_F$ suffices! \sim No hope of including covering constraints.
Complexity matters

A portion of an ontology for the Italian Public Debt:
Sources of complexity

For realistic ontologies, systems based on *PerfectRef* works for queries with at most 7-8 atoms.

Two sources of complexity wrt query:

- conjunctive query evaluation is NP-complete – complexity comes from the need of matching the query and the data
 \[\sim\text{unavoidable!}\]

- the rewritten query has exponential size wrt the original query – complexity comes from the need of “expanding” the query w.r.t. the ontology
 \[\sim\text{avoidable?}\]

Example

TBox \(\mathcal{T}\):

\[q(x) \leftarrow A(x), P(x, y), A(y), P(y, z), A(z)\]

UCQ rewriting of \(q\) w.r.t. \(\mathcal{T}\) contains 729 CQs i.e., it is a UNION of 729 SPJ SQL queries
Sources of complexity

For realistic ontologies, systems based on \textit{PerfectRef} works for queries with at most 7-8 atoms.

Two sources of complexity wrt query:

- conjunctive query evaluation is \textbf{NP-complete} – complexity comes from the need of matching the query and the data
 \(\sim\) \textbf{unavoidable!}

- the rewritten query has exponential size wrt the original query – complexity comes from the need of “expanding” the query w.r.t. the ontology
 \(\sim\) \textbf{avoidable?}

\textbf{Example}

\text{\textbf{TBox} } \mathcal{T}:

\[
\begin{align*}
q(x) & \leftarrow A(x), P(x, y), A(y), P(y, z), A(z) \\
\text{UCQ rewriting of } q \text{ w.r.t. } \mathcal{T} \text{ contains 729 CQs} \\
i.e., \text{it is a UNION of 729 SPJ SQL queries}
\end{align*}
\]
Avoiding exponential blow-up: first attempt

Idea: avoid rewriting whatsoever!

Unfortunately, this idea does not work:

Theorem (Calvanese et al, JAR 2007)

Given $\mathcal{M}(S)$, there is no finite database B such that for every query q, $\text{cert}(q, \langle O, S, \mathcal{M} \rangle) = q^B$
Avoiding exponential blow-up: second attempt

Idea: try to apply the chase only partially, so as to obtain a finite database (possibly with variables) such that only “small rewritings” of conjunctive queries are needed [Kontchakov et al, KR 2010]

Two problems:

- it works only without role inclusions
- (partial) materialization not always appropriate in OBDM
Requiem [Pérez-Urbina et al., 2009] is a query rewriting algorithm based on resolution for \mathcal{ELHIO} that rewrites in UCQ for $DL-Lite_{A,id}$, and limits the number of “reduce” steps wrt PerfectRef. Still the size of the rewritten query is exponential in the worst case.

Presto [Rosati, KR 2010] is the current rewriting algorithm used in Mastro, based on the following ideas for improving the performance of PerfectRef:

- centering the rewriting around the query variables rather than the query atoms – this allows for
 - collapsing sequences of rewriting steps into single steps and
 - dramatically pruning the solution space of the algorithm
- going beyond the disjunctive normal form (UCQ) of the rewritten query – nonrecursive datalog queries (UCQ with an additional unfolding step)
Presto replaces the “atom-rewrite” and “reduce” rules of *PerfectRef* with a rule (based on MGS) that eliminates existential join variables, where elimination of an existential join variable means that the variable turns into a non-join existential variable (through unification steps).

This makes the rewriting produced by Presto exponential with respect to the number of eliminable existential join variables in the query (notice: in practice, often the majority of existential join variables in a CQ are not eliminable).

\[\leadsto \text{dramatic reduction of the size of the query generated. Presto can handle queries with about 30 atoms.} \]
Avoiding exponential blow-up: other attempts

- [Calvanese et al, KR 2012] shows how to exploit knowledge about inclusion dependencies on $\mathcal{M}(\mathcal{S})$ in order to produce more compact rewritings (See ONTOP, an OBDM tool developed at the Free University of Bolzano).
- Prexto [Rosati, ESWC 2012] applies this idea to Presto.

In the worst case, Prexto still rewrites into a union of conjunctive queries of exponential size wrt the original query. Is it avoidable?

Theorem (Kikot et al, DL 2011)

Cheking whether $\vec{t} \in \text{cert}(q, \langle \mathcal{O}, \mathcal{M}, \mathcal{S} \rangle)$ is NP-complete in combined complexity, even if \mathcal{O} is in DL-Lite$_R$, and $\mathcal{M}(\mathcal{S})$ is constituted by just one atomic assertion $A(c)$.

Since answering a FOL query over a database $A(c)$ can be done in linear time, it follows that no algorithm can construct a FOL rewriting in polynomial time, unless $P = NP$.

Avoiding exponential blow-up: other attempts

- Polynomial FOL rewritings exist in the case of DL-$Lite_{core}$ (DL-$Lite_{R}$ without role inclusions) [Kikot et al, DL 2011].

- Polynomial rewritings exist if we allow rewriting to be expressed in nonrecursive Datalog queries using additional symbols [Gottlob and Schwentick, DL 2011].

Exploiting (virtual) ABox dependencies

As in databases, we can exploit dependencies on the data and on the ABox to optimize query processing.

ABox dependencies express conditions on the data in the (virtual) ABox.

- **Syntax:**
 \[C_1 \sqsubseteq_A C_2 \quad R_1 \sqsubseteq_A R_2 \]

- **Meaning:** constrain the assertions present in the ABox
 - \(A \vdash A_1 \sqsubseteq_A A_2 \) iff \(A_1(d) \in A \) implies \(A_2(d) \in A \)
 - \(A \vdash A \sqsubseteq_A \exists P \) iff \(A(d) \in A \) implies \(P(d, d') \in A \) for some \(d' \)
 - \(A \vdash P_1 \sqsubseteq_A P_2 \) iff \(P_1(d, d') \in A \) implies \(P_2(d, d') \in A \)
 - \(\ldots \)

Note: ABox dependencies are fundamentally different from TBox assertions. They constrain the syntactic structure of the ontology (the ABox itself), and not the models.
In an OBDM system, ABox/data dependencies have an impact that spans all system components:

- Dependencies on the sources S induce via the mapping M dependencies on the virtual ABox $M(S)$.

- The mapping itself in general induces additional dependencies on $M(S)$ (that do not directly depend on S).

- Dependencies on $M(S)$ interact with the TBox T, and such interaction can be exploited for optimization.
TBox optimization is based on a characterization of assertions in a TBox \mathcal{T} that are redundant wrt a set Σ of ABox dependencies.

Example (Direct redundancy)

Let \mathcal{T} be:

```
Person ⊑ \exists hasFather \rightarrow Human
```

Let Σ be:

```
Person ⊑ \exists hasFather \rightarrow Human
```

Note: Σ enforces e.g., that $\text{hasFather}(\text{luisa}, \text{franz}) \in \mathcal{A}$ implies $\text{Human}(\text{luisa}) \in \mathcal{A}$.

Then $\text{Person} \sqsubseteq \text{Human}$ is redundant in \mathcal{T}.

The overall characterization of redundant TBox assertions is more involved.
Eliminating redundant TBox assertions

TBox optimization is based on a characterization of assertions in a TBox \mathcal{T} that are redundant wrt a set Σ of ABox dependencies.

Example (Direct redundancy)

Let \mathcal{T} be:

- \existshasFather(Person, Human)

Let Σ be:

- \existshasFather(Person, Human)

Note: Σ enforces e.g., that $\text{hasFather}(\text{luisa}, \text{franz}) \in A$ implies $\text{Human}(\text{luisa}) \in A$.

Then $\text{Person} \sqsubseteq \text{Human}$ is redundant in \mathcal{T}.

The overall characterization of redundant TBox assertions is more involved.
Computing an optimized TBox

Given a TBox \mathcal{T} and a set Σ of ABox dependencies:

1. Compute the deductive closure \mathcal{T}_{cl} of \mathcal{T} (at most quadratic in size of \mathcal{T}).
2. Compute the deductive closure Σ_{cl} of Σ (at most quadratic in size of Σ).
3. Eliminate from \mathcal{T}_{cl} all TBox assertions redundant wrt Σ_{cl}, obtaining \mathcal{T}_{opt}.

Notes:
- \mathcal{T}_{opt} can be computed in polynomial time in the size of \mathcal{T} and Σ.
- \mathcal{T}_{opt} might be much smaller than \mathcal{T}.

Theorem

For every (virtual) ABox A satisfying Σ and for every UCQ q, we have that

$$\text{cert}(q, \langle \mathcal{T}, A \rangle) = \text{cert}(q, \langle \mathcal{T}_{opt}, A \rangle).$$

Hence, \mathcal{T}_{opt} can be used instead of \mathcal{T} independently of the adopted query rewriting method (provided the ABox satisfies Σ).
Computing an optimized TBox

Given a TBox \mathcal{T} and a set Σ of ABox dependencies:

1. Compute the deductive closure \mathcal{T}_{cl} of \mathcal{T} (at most quadratic in size of \mathcal{T}).
2. Compute the deductive closure Σ_{cl} of Σ (at most quadratic in size of Σ).
3. Eliminate from \mathcal{T}_{cl} all TBox assertions redundant wrt Σ_{cl}, obtaining \mathcal{T}_{opt}.

Notes:

- \mathcal{T}_{opt} can be computed in polynomial time in the size of \mathcal{T} and Σ.
- \mathcal{T}_{opt} might be much smaller than \mathcal{T}.

Theorem

For every (virtual) ABox \mathcal{A} satisfying Σ and for every UCQ q, we have that

$$\text{cert}(q, \langle \mathcal{T}, \mathcal{A} \rangle) = \text{cert}(q, \langle \mathcal{T}_{opt}, \mathcal{A} \rangle).$$

Hence, \mathcal{T}_{opt} can be used instead of \mathcal{T} independently of the adopted query rewriting method (provided the ABox satisfies Σ).
Computing an optimized TBox

Given a TBox \mathcal{T} and a set Σ of ABox dependencies:

1. Compute the deductive closure \mathcal{T}_{cl} of \mathcal{T} (at most quadratic in size of \mathcal{T}).
2. Compute the deductive closure Σ_{cl} of Σ (at most quadratic in size of Σ).
3. Eliminate from \mathcal{T}_{cl} all TBox assertions redundant wrt Σ_{cl}, obtaining \mathcal{T}_{opt}.

Notes:

- \mathcal{T}_{opt} can be computed in polynomial time in the size of \mathcal{T} and Σ.
- \mathcal{T}_{opt} might be much smaller than \mathcal{T}.

Theorem

For every (virtual) ABox \mathcal{A} satisfying Σ and for every UCQ q, we have that

$$\text{cert}(q, \langle \mathcal{T}, \mathcal{A} \rangle) = \text{cert}(q, \langle \mathcal{T}_{opt}, \mathcal{A} \rangle).$$

Hence, \mathcal{T}_{opt} can be used instead of \mathcal{T} independently of the adopted query rewriting method (provided the ABox satisfies Σ).
Derived from dependencies on the data in S:

Example

Suppose we have two tables in S:
- $\text{ResT}[\text{SSN: String, \ldots}]$ stores data about researchers
- $\text{ManT}[\text{SSN: String, \ldots}]$ stores data about managers

Consider the following mapping \mathcal{M}:
- m_1: \texttt{SELECT SSN FROM ResT} \leadsto $\text{Researcher(pers(SSN))}$
- m_2: \texttt{SELECT SSN FROM ManT} \leadsto $\text{Manager(pers(SSN))}$

If S satisfies the inclusion dependency $\text{ManT[SSN] \subseteq ResT[SSN]}$, then $\mathcal{M}(S)$ satisfies the dependency $\text{Manager} \sqsubseteq_{\mathcal{M}(S)} \text{Researcher}$.
Deriving ABox dependencies

Derived from dependencies on the data in \(S \):

Example

Suppose we have two tables in \(S \):
- \(\text{ResT}[SSN: \text{String}, \ldots] \) stores data about researchers
- \(\text{ManT}[SSN: \text{String}, \ldots] \) stores data about managers

Consider the following mapping \(\mathcal{M} \):
- \(m_1: \text{SELECT SSN FROM ResT} \leadsto \text{Researcher}(\text{pers}(SSN)) \)
- \(m_2: \text{SELECT SSN FROM ManT} \leadsto \text{Manager}(\text{pers}(SSN)) \)

If \(S \) satisfies the inclusion dependency \(\text{ManT}[SSN] \subseteq \text{ResT}[SSN] \), then \(\mathcal{M}(S) \) satisfies the dependency \(\text{Manager} \sqsubseteq_{\mathcal{M}(S)} \text{Researcher} \).
Deriving ABox dependencies (cont’d)

Induced by the form of the data in S and the mapping M:

Example

Suppose that in S we have one table: $\text{ResT}[\text{SSN}: \text{String}, \text{Level}: \text{Boolean}, \ldots]$

- Stores data about researchers (including managers).
- For managers the value of Level is true, otherwise it is false.

Consider the following mapping M:

m_1: SELECT SSN FROM ResT \leadsto Researcher($\text{pers}(\text{SSN})$)

m_2: SELECT SSN FROM ResT \leadsto Manager($\text{pers}(\text{SSN})$)

\[\text{WHERE Level='true'} \]

We have that $M(S)$ satisfies the dependency $\text{Manager} \sqsubseteq_{M(S)} \text{Researcher}$. This holds since the lhs query of m_2 is contained in the lhs query of m_1 (in the traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is very common in OBDM systems.
Induced by the form of the data in S and the mapping M:

Example

Suppose that in S we have one table: $\text{ResT}[SSN:\text{String}, \text{Level}: \text{Boolean}, \ldots]$

- Stores data about researchers (including managers).
- For managers the value of Level is true, otherwise it is false.

Consider the following mapping M:

m_1: $\text{SELECT SSN FROM ResT} \rightsquigarrow \text{Researcher(}\text{pers}(SSN))$

m_2: $\text{SELECT SSN FROM ResT} \rightsquigarrow \text{Manager(}\text{pers}(SSN))$

WHERE Level='true'

We have that $M(S)$ satisfies the dependency $\text{Manager} \sqsubseteq_{M(S)} \text{Researcher.}$

This holds since the lhs query of m_2 is contained in the lhs query of m_1 (in the traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is very common in OBDM systems.
Induced by the form of the data in \(S \) and the mapping \(\mathcal{M} \):

Example

Suppose that in \(S \) we have one table: \(\text{ResT}[SSN: \text{String}, \text{Level}: \text{Boolean}, \ldots] \)
- Stores data about researchers (including managers).
- For managers the value of \(\text{Level} \) is \text{true}, otherwise it is \text{false}.

Consider the following mapping \(\mathcal{M} \):

\[
\begin{align*}
m_1 &: \text{SELECT SSN FROM ResT} \quad \leadsto \quad \text{Researcher(}\text{pers(SSN)})
m_2 &: \text{SELECT SSN FROM ResT} \quad \leadsto \quad \text{Manager(}\text{pers(SSN)})
\text{WHERE Level='true'}
\end{align*}
\]

We have that \(\mathcal{M}(S) \) satisfies the dependency \(\text{Manager} \sqsubseteq_{\mathcal{M}(S)} \text{Researcher} \). This holds since the lhs query of \(m_2 \) is contained in the lhs query of \(m_1 \) (in the traditional sense of query containment in DBs).

This situation corresponds to a natural way of constructing mappings, and is very common in OBDM systems.
Deriving ABox dependencies (cont’d)

We can use the mapping to enforce dependencies “corresponding” to the TBox assertions:

Example

Suppose that in S we have one table: ResT[SSN: String, $Type$: Char, . . .]

- Stores data about researchers of all types.
- The value of $Type$ encodes the type or researcher: 'm' for managers, 'p' for principal investigators, 'c' for coordinators, and 'r' for other researchers.

We can define a mapping M that induces suitable dependencies:

m_1: SELECT SSN FROM ResT \leadsto Researcher(pers(SSN))

m_2: SELECT SSN FROM ResT WHERE $Type$='p' \leadsto PrincInv(pers(SSN))

m_3: SELECT SSN FROM ResT WHERE $Type$='c' \leadsto Coordinator(pers(SSN))

m_4: SELECT SSN FROM ResT WHERE $Type$='m' OR $Type$='p' OR $Type$='c' \leadsto Manager(pers(SSN))

We have that $M(S)$ satisfies e.g., the dependency PrincInv \sqsubseteq_M Manager.
Deriving ABox dependencies (cont’d)

We can use the mapping to enforce dependencies “corresponding” to the TBox assertions:

Example

Suppose that in S we have one table: $\text{ResT}[SSN: \text{String}, \text{Type}: \text{Char}, \ldots]$

- Stores data about researchers of all types.
- The value of Type encodes the type or researcher: ‘m’ for managers, ‘p’ for principal investigators, ‘c’ for coordinators, and ‘r’ for other researchers.

We can define a mapping \mathcal{M} that induces suitable dependencies:

m_1: \text{SELECT SSN FROM ResT} \leadsto \text{Researcher(pers(SSN))}$

m_2: \text{SELECT SSN FROM ResT WHERE Type='p'} \leadsto \text{PrincInv(pers(SSN))}$

m_3: \text{SELECT SSN FROM ResT WHERE Type='c'} \leadsto \text{Coordinator(pers(SSN))}$

m_4: \text{SELECT SSN FROM ResT WHERE Type='m' OR Type='p' OR Type='c'} \leadsto \text{Manager(pers(SSN))}$

We have that $\mathcal{M}(S)$ satisfies e.g., the dependency $\text{PrincInv} \sqsubseteq_{\mathcal{M}(S)} \text{Manager}$.
Outline

1. Algorithms for query answering
2. Beyond classical first-order queries
The *DL-Lite* family includes *DL-Lite*$_R$, that is the basis of *OWL 2 QL*, a profile of *OWL 2*. Does the *DL-Lite*$_{A,id}$ technique provide a solution to the problem of answering SPARQL queries posed to *OWL 2 QL* ontologies?

The answer is no, for the following main reasons:

- *OWL 2 QL* has some features on relations that *DL-Lite*$_{A,id}$ does not have (i.e., reflexive, irreflexive relations)
- In *OWL 2 QL* one can assert inequality between individuals, while *DL-Lite*$_{A,id}$ does not have inequality; SPARQL queries posed to *OWL 2 QL* ontologies can also use the inequality predicate, contrary to pure CQs
- In *OWL 2 QL* an ontology entity can belong to different categories (e.g., an individual and a class), while *DL-Lite*$_{A,id}$ is a pure FOL language (metamodeling)
- Variables appearing in both predicate and argument positions (metaquerying) are allowed in SPARQL queries, contrary to pure CQs (or, the Direct Semantics Entailment Regime of SPARQL)
Up to now, we have assumed that the TBox and the ABox were first-order, with a strict separation between individuals and classes/relations.

Metamodelling: specifying
- **metaclasses** (classes whose instances can be themselves classes), and
- **metaproperties** (relationships between metaclasses)

Metaquerying: expressing queries with
- variables both in predicate and object position, and
- TBox atoms
Enriching the mapping languages: mapping intensional knowledge

Source S:

T-CarTypes

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Coupé</td>
</tr>
<tr>
<td>T2</td>
<td>SUV</td>
</tr>
<tr>
<td>T3</td>
<td>Sedan</td>
</tr>
<tr>
<td>T4</td>
<td>Estate</td>
</tr>
</tbody>
</table>

T-Cars

<table>
<thead>
<tr>
<th>CarCode</th>
<th>CarType</th>
<th>EngineSize</th>
<th>BreakPower</th>
<th>Color</th>
<th>TopSpeed</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB111</td>
<td>T1</td>
<td>2000</td>
<td>200</td>
<td>Silver</td>
<td>260</td>
</tr>
<tr>
<td>AF333</td>
<td>T2</td>
<td>3000</td>
<td>300</td>
<td>Black</td>
<td>200</td>
</tr>
<tr>
<td>BR444</td>
<td>T2</td>
<td>4000</td>
<td>400</td>
<td>Grey</td>
<td>220</td>
</tr>
<tr>
<td>AC222</td>
<td>T4</td>
<td>2000</td>
<td>125</td>
<td>Dark Blue</td>
<td>180</td>
</tr>
<tr>
<td>BN555</td>
<td>T3</td>
<td>1000</td>
<td>75</td>
<td>Light Blue</td>
<td>180</td>
</tr>
<tr>
<td>BP666</td>
<td>T1</td>
<td>3000</td>
<td>600</td>
<td>Red</td>
<td>240</td>
</tr>
</tbody>
</table>
Ontology \mathcal{O}: Car \sqsubseteq Vehicle

Source \mathcal{S}:

<table>
<thead>
<tr>
<th>T-CarTypes</th>
<th>T-Cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
<td>CarCode</td>
</tr>
<tr>
<td>T1</td>
<td>AB111</td>
</tr>
<tr>
<td>T2</td>
<td>AF333</td>
</tr>
<tr>
<td>T3</td>
<td>BR444</td>
</tr>
<tr>
<td>T4</td>
<td>AC222</td>
</tr>
<tr>
<td></td>
<td>BN555</td>
</tr>
<tr>
<td></td>
<td>BP666</td>
</tr>
</tbody>
</table>

Mapping \mathcal{M}:

- $\{(y) \mid \text{T-CarTypes}(x, y)\} \leadsto \text{TypeOfCar}(y), y \sqsubseteq \text{Car}$
- $\{(x, v, z) \mid \text{T-Cars}(x, y, t, u, v, q) \land \text{T-CarTypes}(y, z)\} \leadsto z(x)$
- $\{(x, y) \mid \text{T-CarTypes}(z_1, x) \land \text{T-CarTypes}(z_2, y) \land x \neq y\} \leadsto x \sqsubseteq \neg y$

The ontology \mathcal{O} is enriched through \mathcal{M} and \mathcal{S}.
With metaclasses and metaproperties in the ontology, metaqueries become natural, e.g.:

Example

Interesting queries that can be posed to $\langle O, S, M \rangle$ exploit the higher-order nature of the system:

- Return all the instances of *Car*, each one with its own type:
 \[q(x, y) \leftarrow y(x), \text{Car}(x), \text{TypeOfCar}(y) \]

- Return all the concepts which *AB111* is an instance of:
 \[q(x) \leftarrow x(\text{AB111}) \]
Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegetarian
Object properties: ate, liked, dislike

\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y) \} \\
\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y), \text{dislike}(x, \text{margherita}) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegeterian} \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegeterian}, z \neq \text{ortolana} \}
Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegetarian
Object properties: ate, liked, dislike

\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y) \} \\
\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y), \text{dislike}(x, \text{margherita}) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian} \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian}, z \neq \text{ortolana} \}
Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegetarian
Object properties: ate, liked, dislike

\{ (x) | \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y) \} \\
\{ (x) | \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y), \text{dislike}(x, \text{margherita}) \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z) \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian} \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian}, z \neq \text{ortolana} \}
Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegeterian
Object properties: ate, liked, dislike

\[
\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y) \} \\
\{ (x) \mid \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y), \text{dislike}(x, \text{margherita}) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z) \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegeterian} \} \\
\{ (x, z) \mid \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegeterian}, z \neq \text{ortolana} \}
\]
Example of metaquerying

Consider querying an ontology about the “pizza” domain, including

Classes: margherita, ortolana, vegetable
Object properties: ate, liked, dislike

\{ (x) | \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y) \} \\
\{ (x) | \text{ate}(x, y), \text{liked}(x, y), \text{margherita}(y), \text{dislike}(x, \text{margherita}) \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z) \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian} \} \\
\{ (x, z) | \text{ate}(x, y), \text{liked}(x, y), z(y), \text{dislike}(x, z), z \sqsubseteq \text{vegetarian}, z \neq \text{ortolana} \}
Higher order semantics: interpretation as a pair $\langle \Sigma, \mathcal{I}_0 \rangle$

- **Interpretation structure** Σ:

- **Interpretation function** \mathcal{I}_0, assigning semantics (i.e., a domain object) to expressions.

Note: a domain object is not forced to be an individual (e.g., see β), or to have a concept or relation extension.
Higher order semantics: satisfaction

Suitable conditions state when an axiom is satisfied by an interpretation $\langle \Sigma, \mathcal{I}_0 \rangle$:

- for concepts: $\langle \Sigma, \mathcal{I}_0 \rangle \models e_1 \sqsubseteq e_2$ if $(e_1^{\mathcal{I}_0})^E \subseteq (e_2^{\mathcal{I}_0})^E$
- for individuals: $\langle \Sigma, \mathcal{I}_0 \rangle \models e_1(e_2)$ if $(e_2^{\mathcal{I}_0})^E \in (e_1^{\mathcal{I}_0})^E$
- for relations: $\langle \Sigma, \mathcal{I}_0 \rangle \models e_1(e_2, e_3)$ if $(e_2^{\mathcal{I}_0}, e_3^{\mathcal{I}_0}) \in (e_1^{\mathcal{I}_0})^R$
- for attributes: $\langle \Sigma, \mathcal{I}_0 \rangle \models e_1(e_2, e_3)$ if $(e_2^{\mathcal{I}_0}, e_3^{\mathcal{I}_0}) \in (e_1^{\mathcal{I}_0})^A$
- ...
The “metagrounding” technique

Let Q be a query over an ontology O (without identification assertions).

- a metagrounding of Q is a query Q' obtained from Q by substituting the metavariables occurring in Q in class, object property or data property positions with a class, object property and data property expression over O, respectively.

 - e.g., if O_1 contains the classes A, B, C and the object property R, and Q is the query

 \[
 Q_1() \leftarrow A \sqsubseteq \neg x, B(y), R(x, z), z(y)
 \]

 then a metagrounding of Q is the query Q' obtained by applying the substitution $\{x \leftarrow C, z \leftarrow C\}$, i.e.,

 \[
 Q_1() \leftarrow A \sqsubseteq \neg C, B(y), R(C, C), C(y)
 \]

- Answering Q through metagrounding means computing the union of the answers to all metagroundings of Q
Does metagrounding work?

Example

- $\mathcal{O}_1 : \{B(F), C(F), A \subseteq \neg C, R(C, A), R(B, C), A(E)\}$
- $Q_1() \leftarrow A \subseteq \neg x, B(y), R(x, z), z(y)$

Although no metagrounding of Q_1 is true, one can show that Q_1 is indeed true, by partitioning the models of \mathcal{O}_1 into

1. those for which A and B are disjoint, and
2. those for which A and B are not disjoint

and showing that the metagrounding $(x \leftarrow B, z \leftarrow C, y \leftarrow F)$ makes Q_1 true in (1), and the metagrounding $(x \leftarrow C, z \leftarrow A, y \leftarrow F)$ makes Q_1 true in (2).

Metagrounding does not suffice

In general, answering metaqueries cannot be done through metagrounding. Note that in the above example, the “culprit” is the uncertainty of the axiom $A \subseteq \neg B$.

Uncertain axioms and TBox-complete ontologies

Definition

- An axiom α over the alphabet of \mathcal{O} is **certain** if either $\mathcal{O} \models \alpha$, or $\mathcal{O} \models \neg \alpha$.
- \mathcal{O} is **TBox-complete** if there exists no negative axiom that can be expressed over the alphabet of \mathcal{O} that is not certain.

- TBox-completeness can be checked in quadratic time w.r.t. the size of the ontology alphabet.
- A methodology can be devised to obtain a TBox-complete ontology from an ontology that is not TBox-complete, keeping the same “intuitive intended models”.
- TBox-complete ontologies are common in practice. For example, every ontology designed following the traditional methodology for designing ER schemas can be naturally turned into a TBox-complete ontology.
There is a model \(\text{can}(\langle O, A \rangle) \) of \(\langle O, A \rangle \) such that, for each model \(M' \) of \(\langle O, A \rangle \), there is an extended homomorphism from \(\text{can}(\langle O, A \rangle) \) to \(M' \). Extended means that the homomorphism preserves also TBox assertions, e.g., if \(c_1^{\text{can}(\langle O, A \rangle)} \subseteq c_2^{\text{can}(\langle O, A \rangle)} \), then \(h(c_1)^{M'} \subseteq h(c_2)^{M'} \).

It can be shown that in \(\text{can}(\langle O, A \rangle) \) there are exactly the same classes and relations we have in \(\langle O, A \rangle \), and the TBox assertions that are satisfied in \(\text{can}(\langle O, A \rangle) \) are exactly those that are logically implied by \(\langle O, A \rangle \).

This allows us to show that given a TBox-complete ontology \(O \) and a query \(Q \), \(Q \) can be answered by applying the metagrounding technique, i.e. \(Q \) is true if at least one of its metagrounding is true.
Answering metaqueries over TBox-complete ontologies through metagrounding

Query answering algorithm

input ontology \(O\), query \(Q\)

if there exists a metagrounding \(Q'\) such that \(O \models int(Q')\) and \(O \models ext(Q')\), where

- \(int(Q')\) denotes the TBox atoms of \(Q'\), and
- \(ext(Q')\) denotes the ABox atoms of \(Q'\)

then return \textit{true}

else return \textit{false}

- the algorithm is sound and complete for TBox-complete ontologies
- \(O \models int(Q')\) and \(O \models ext(Q')\) can be checked by using any off-the-shelf OBDM inference and querying systems
The general case

Let $\mathcal{U}^\mathcal{O}$ be the set of negative assertions that can be expressed over the alphabet of \mathcal{O} and are uncertain in \mathcal{O}

Definition

- If $\alpha \in \mathcal{U}^\mathcal{O}$, then a **violation set** of α w.r.t. \mathcal{O} is a minimal set $\mathcal{V}_{\alpha,\mathcal{O}}$ of ABox axioms over the predicates of \mathcal{O} and a set of fresh individuals not in \mathcal{O}, such that $\alpha \cup \mathcal{V}_{\alpha,\mathcal{O}}$ is unsatisfiable
- If $\sigma \subseteq \mathcal{U}^\mathcal{O}$, then the **$\sigma$-completion** of \mathcal{O}, denoted \mathcal{O}^{σ}, is the ontology $\mathcal{O} \cup \sigma \cup \mathcal{C}^{\mathcal{U}^\mathcal{O} \setminus \sigma}$, where $\mathcal{C}^{\mathcal{U}^\mathcal{O} \setminus \sigma}$ is the union of the violation sets of axioms in $\mathcal{U}^\mathcal{O}$ that are not in σ

Note: Intuitively, \mathcal{O}^{σ} is obtained from \mathcal{O} by adding all axioms in σ, and suitable axioms in such a way that all axioms in $\mathcal{U}^\mathcal{O} \setminus \sigma$ are violated

Note: \mathcal{O}^{σ} is TBox-complete
Example

For the following ontology \mathcal{O}_2:

$$\{B(F), C(F), A \sqsubseteq \lnot C, R(E, E), R(F, F), R(C, A), R(B, C), A(E)\}$$

We have $\mathcal{U}^{\mathcal{O}_2} = \{A \sqsubseteq \lnot B\}$, and

- for $\sigma_1 = \{A \sqsubseteq \lnot B\}$, we have $\mathcal{O}_2^{\sigma_1} = \mathcal{O}_2 \cup \{A \sqsubseteq \lnot B\}$.
- for $\sigma_2 = \emptyset$, we have $\mathcal{O}_2^{\sigma_2} = \mathcal{O}_2 \cup \{A(s), B(s)\}$.
By exploiting the notions of violation set and ontology completion, we are able to derive the following sound and complete algorithm:

Query answering algorithm

```
input: ontology $\mathcal{O}$, query $Q$
if there exists $\sigma \subseteq \mathcal{U}^\mathcal{O}$ such that $\mathcal{O}^\sigma \not\models Q$
    then return $false$
else return $true$
```

Complexity

<table>
<thead>
<tr>
<th></th>
<th>ABox complexity</th>
<th>TBox complexity</th>
<th>Combined complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBox-complete ontologies</td>
<td>AC^0</td>
<td>$P\text{TIME}$</td>
<td>NP-complete</td>
</tr>
<tr>
<td>General ontologies</td>
<td>AC^0</td>
<td>$coNP$-complete</td>
<td>Π^p_2-complete</td>
</tr>
</tbody>
</table>
The notion of dynamic classification

Metamodeling can be used to express important modeling patterns, such as dynamic classification.

- **Static classifications:**
 Person is classified by sex into Male and Female. This means that Person(John), and sex(John,Male) implies Male(John).

- **Dynamic classifications:**
 Product is classified by HasProductType.

\[
\text{HasProductType} \sqsubseteq \text{rdf:type} \\
\exists \text{HasProductType} \sqsubseteq \text{Product} \\
(\text{funct HasProductType}) \\
\forall x (\exists y \text{HasProductType}(y, x)) \leftrightarrow x \sqsubseteq \text{Product} \\
\forall x \forall y (\text{rdf:type}(x, y) \land \exists z \text{HasProductType}(z, y)) \rightarrow \text{HasProductType}(x, y)
\]

Note that the following is implied:
\[
\forall x \forall y \forall z \forall w \text{HasProductType}(x, z) \land \text{HasProductType}(y, w) \land z \neq w \rightarrow z \sqsubseteq \neg w
\]

Note that such metamodeling pattern requires to go beyond OWL 2 QL.
1 Algorithms for query answering

2 Beyond classical first-order queries
The problem of inconsistency

Up to now, we have implicitly assumed to deal with satisfiable OBDM systems, but in practice the OBDM system can be unsatisfiable.

Problem

Query answering based on classical logic becomes meaningless in the presence of inconsistency (ex falso quodlibet).
Example: an inconsistent *DL-Lite* ontology

O

RedWine ⊑ Wine	WhiteWine ⊑ Wine
RedWine ⊑ ¬WhiteWine	Wine ⊑ ¬Beer
Wine ⊑ ∃producedBy	∃producedBy ⊑ Wine
Wine ⊑ ¬Winery	Beer ⊑ ¬Winery
∃producedBy ⊑ ¬Winery	(funct producedBy)

M

| R1(x,y,’white’) ℓ WhiteWine(x) | R1(x,y,’red’) ℓ RedWine(x) |
| R2(x,y) ℓ Beer(x) | R1(x,y,z) ∨ R2(x,y) ℓ producedBy(x,y) |

S

| R1(grechetto,p1,’white’) | R1(grechetto,p1,’red’) |
| R2(guinness,p2) | R1(falanghina,p1,’white’) |
Inconsistent-tolerant semantics

Problem

To handle classically-inconsistent OBDM systems in a more meaningful way, one needs to change the semantics.

The semantics proposed in [Lembo et al, RR 2010] for inconsistent OBDM systems is based on the following principles:

- We assume that \mathcal{O} and \mathcal{M} are always consistent (this is true if \mathcal{O} is expressed in $DL-Lite_{A, id}$), so that inconsistencies are caused by the interaction between the data at S and the other components of the system, i.e., between $\mathcal{M}(S)$ and \mathcal{O}.

- We resort to the notion of repair [Arenas et al, PODS 1999]. Intuitively, a repair for $\langle \mathcal{O}, S, \mathcal{M} \rangle$ is an ontology $\langle \mathcal{O}, \mathcal{A} \rangle$ that is consistent, and “minimally” differs from $\langle \mathcal{O}, S, \mathcal{M} \rangle$.

What does it mean for \mathcal{A} to be “minimally different” from $\langle O, S, M \rangle$? We base this concept on the notion of symmetric difference.

We write $S_1 \oplus S_2$ to denote the symmetric difference between S_1 and S_2, i.e.,

\[S_1 \oplus S_2 = (S_1 \setminus S_2) \cup (S_2 \setminus S_1) \]

Definition (Repair)

Let $\mathcal{K} = \langle O, S, M \rangle$ be an OBDM system. A repair of \mathcal{K} is an ABox \mathcal{A} such that:

1. $\text{Mod}(\langle O, \mathcal{A} \rangle) \neq \emptyset$,
2. no set of facts \mathcal{A}' exists such that
 - $\text{Mod}(\langle O, \mathcal{A}' \rangle) \neq \emptyset$,
 - $\mathcal{A}' \oplus M(S) \subset \mathcal{A} \oplus M(S)$
Example: Repairs

Rep_1
\{WhiteWine\text{\textit{grechetto}}), \text{Beer(guinnes)}, \text{WhiteWine(falanghina)}\}\}

Rep_2
\{RedWine\text{\textit{grechetto}}), \text{Beer(guinnes)}, \text{WhiteWine(falanghina)}\}\}

Rep_3
\{WhiteWine\text{\textit{grechetto}}, \text{producedBy(guinnes, p2)}, \text{WhiteWine(falanghina)}\}\}

Rep_4
\{RedWine\text{\textit{grechetto}}, \text{producedBy(guinnes, p2)}, \text{WhiteWine(falanghina)}\}\}
Reasoning with all repairs: the AR semantics

Problems:

- Many repairs in general
- What is the complexity of reasoning about all such repairs?

Theorem

Let \(\mathcal{K} = \langle \mathcal{O}, \mathcal{S}, \mathcal{M} \rangle \) be an OBDM system, and let \(\alpha \) be a ground atom. Deciding whether \(\alpha \) is logically implied by every repair of \(\mathcal{K} \) is coNP-complete with respect to data complexity.
coNP hardness of the AR-semantics

Ontology \(\mathcal{O} \)

\[
\exists R \sqsubseteq Unsat \\
\exists R^- \sqsubseteq \neg \exists LT_1^- \\
\exists R^- \sqsubseteq \neg \exists LF_1^- \\
\exists R^- \sqsubseteq \neg \exists LT_2^- \\
\exists R^- \sqsubseteq \neg \exists LF_2^- \\
\exists R^- \sqsubseteq \neg \exists LT_3^- \\
\exists R^- \sqsubseteq \neg \exists LF_3^- \\
\exists LT_1 \sqsubseteq \neg \exists LF_1 \\
\exists LT_1 \sqsubseteq \neg \exists LF_2 \\
\exists LT_1 \sqsubseteq \neg \exists LF_3 \\
\exists LF_1 \sqsubseteq \neg \exists LT_2 \\
\exists LF_1 \sqsubseteq \neg \exists LT_3 \\
\exists LT_2 \sqsubseteq \neg \exists LF_2 \\
\exists LT_2 \sqsubseteq \neg \exists LF_3 \\
\exists LF_2 \sqsubseteq \neg \exists LT_3 \\
\exists LT_3 \sqsubseteq \neg \exists LF_3
\]

3-CNF formula \(\phi \):

\[
(a_1 \lor \neg a_2 \lor \neg a_3) \land (\neg a_3 \lor a_4 \lor \neg a_1)
\]

ABox \(\mathcal{A} \) corresponding to \(\phi \)

\(\phi \) satisfiable iff \(\langle \mathcal{O}, \mathcal{A} \rangle \not\models_{AR} Unsat(a) \)
When in doubt, throw it out: the IAR semantics

Other intractability results of the AR semantics, even for simpler languages (e.g., [Bienvenu et al 2012-2015])

Idea: The IAR semantics
We consider the “intersection of all repairs”, and the set of models of such intersection under \mathcal{O} as the semantics of the system *When in Doubt, Throw It Out*.

Note that the IAR semantics is an approximation of the AR semantics
Inconsistent-tolerant query answering

Two possible methods for answering queries posed to $\mathcal{K} = \langle \mathcal{O}, \mathcal{S}, \mathcal{M} \rangle$ according to the inconsistency-tolerant semantics:

- Compute the intersection \mathcal{A} of all repairs of \mathcal{K}, and then compute \vec{t} such that $\langle \mathcal{O}, \mathcal{A} \rangle \models q(\vec{t})$
- Rewrite the query q into q' in such a way that, for all \vec{t}, we have that $\mathcal{K} \models_{IAR} q(\vec{t})$ is equivalent to $\vec{t} \in q'(\mathcal{M}(\mathcal{S}))$. Then, evaluate q' over $\mathcal{M}(\mathcal{S})$.

We have devised a rewriting technique which encodes a UCQ q into a FOL query q' which, evaluated against the original $\mathcal{M}(\mathcal{S})$, retrieves only the certain answers of q w.r.t the IAR semantics [Lembo et al, JSW 2015].
Rewriting technique

Given a UCQ $Q = q_1 \lor q_2 \lor \ldots \lor q_n$ over $\langle \mathcal{O}, \mathcal{S}, \mathcal{M} \rangle$

- we compute $\text{PerfectRef}_{IAR}(Q, \mathcal{O}, \mathcal{M})$ as
 $\text{MapRewriting}_{\mathcal{M}}(\text{IncRewritingUCQ}_{IAR}(\text{PerfectRef}(Q, \mathcal{O}), \mathcal{O}))$
- we evaluate $\text{PerfectRef}_{IAR}(Q, \mathcal{O}, \mathcal{M})$ over \mathcal{S}

where

- $\text{PerfectRef}(Q, \mathcal{O})$ rewrites Q taking care of \mathcal{O}
- $\text{IncRewritingUCQ}_{IAR}(Q, \mathcal{O}) = \bigvee_{i=1}^{n} \text{IncRewriting}(q_i, \mathcal{O})$ rewrites Q taking care of inconsistencies
- $\text{MapRewriting}_{\mathcal{M}}(Q)$ rewrites Q taking care of \mathcal{M}
Let us consider the CQ

\[q = \exists x. \text{RedWine}(x) \]

We have that \(\text{IncRewriting}_{IAR}(q, \mathcal{O}) \) is

\[\exists x. \text{RedWine}(x) \land \neg \text{WhiteWine}(x) \land \neg \text{Beer}(x) \land \neg \text{Winery}(x) \]
Let Q be a UCQ over $\langle \mathcal{O}, S, M \rangle$. Deciding whether $\vec{t} \in \text{cert}_{IAR}(Q, \langle \mathcal{O}, S, M \rangle)$ is in AC^0 in data complexity.

Complexity

<table>
<thead>
<tr>
<th>problem</th>
<th>AR-semantics</th>
<th>IAR-semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>instance checking</td>
<td>coNP-complete</td>
<td>in AC_0</td>
</tr>
<tr>
<td>UCQ answering</td>
<td>coNP-complete</td>
<td>in AC_0</td>
</tr>
</tbody>
</table>
Outline

1. Algorithms for query answering

2. Beyond classical first-order queries
Conclusions: Many challenges for OBDM

- Query answering in **OBDM systems** *(Ontop, Mastro, etc.)*
 - More optimizations in query answering
 - Rewriting wrt mapping (even GAV mapping are problematic)
 - More powerful metamodeling and optimized metaquerying

- **Inconsistency-tolerant query answering**
 - More semantics?
 - Optimizations
 - Preferences over repairs
 - More powerful (meta)querying

- **Ontology-based update**
 - Semantics
 - Pushing the updates to the data sources
 - Updates in the presence of inconsistencies

- Experimenting OBDM in real applications