on-line planning

• autonomous robots must be able to plan on line, i.e., using partial workspace information collected during the motion via the robot sensors

• incremental workspace information may be integrated in a map and used in a sense-plan-move paradigm (deliberative navigation)

• alternatively, incremental workspace information may be used to plan motions following a memoryless stimulus-response paradigm (reactive navigation)
artificial potential fields

- idea: build potential fields in \mathcal{C} so that the point that represents the robot is attracted by the goal q_g and repelled by the \mathcal{C}-obstacle region $\mathcal{C}O$

- the total potential U is the sum of an attractive and a repulsive potential, whose negative gradient $-\nabla U(q)$ indicates the most promising local direction of motion

- the chosen metric in \mathcal{C} plays a role
attractive potential

- **objective**: to guide the robot to the goal q_g
- **two possibilities**: e.g., in $\mathcal{C} = \mathbb{R}^2$

![Diagram showing paraboloidal and conical potentials](image)

paraboloidal

conical
• **paraboloidal**: let \(e = q_g - q \) and choose \(k_a > 0 \)

\[
U_{a1}(q) = \frac{1}{2} k_a e^T(q)e(q) = \frac{1}{2} k_a \| e(q) \|^2
\]

• the resulting attractive force is **linear** in \(e \)

\[
f_{a1}(q) = -\nabla U_{a1}(q) = k_a e(q)
\]

• **conical**:

\[
U_{a2}(q) = k_a \| e(q) \|
\]

• the resulting attractive force is **constant**

\[
f_{a2}(q) = -\nabla U_{a2}(q) = k_a \frac{e(q)}{\| e(q) \|}
\]
• f_{a1} behaves better than f_{a2} in the vicinity of q_g but increases indefinitely with e

• a convenient solution is to combine the two profiles: conical away from q_g and paraboloidal close to q_g

$$U_a(q) = \begin{cases}
\frac{1}{2} k_a \|e(q)\|^2 & \text{if } \|e(q)\| \leq \rho \\
kd e(q) & \text{if } \|e(q)\| > \rho
\end{cases}$$

continuity of f_a at the transition requires

$$k_a e(q) = k_b \frac{e(q)}{\|e(q)\|} \quad \text{for } \|e(q)\| = \rho$$

i.e., $k_b = \rho k_a$
repulsive potential

- **objective**: keep the robot away from CO
- assume that CO has been partitioned in advance in convex components CO_i
- for each CO_i define a repulsive field

$$U_{r,i}(q) = \begin{cases} \frac{k_{r,i}}{\gamma} \left(\frac{1}{\eta_i(q)} - \frac{1}{\eta_{0,i}} \right)^\gamma & \text{if } \eta_i(q) \leq \eta_{0,i} \\ 0 & \text{if } \eta_i(q) > \eta_{0,i} \end{cases}$$

where $k_{r,i} > 0$; $\gamma = 2, 3, \ldots$; $\eta_{0,i}$ is the range of influence of CO_i; and $\eta_i(q)$ is the clearance

$$\eta_i(q) = \min_{q' \in CO_i} \|q - q'\|$$
the higher γ, the steepest the slope

$U_{r,i}$ goes to ∞

at the boundary of CO_i

equipotential contours
• the resulting repulsive force is

\[
f_{r,i}(q) = -\nabla U_{r,i}(q) = \begin{cases}
\frac{k_{r,i}}{\eta_i^2(q)} \left(\frac{1}{\eta_i(q)} - \frac{1}{\eta_0,i} \right)^{\gamma-1} \nabla \eta_i(q) & \text{if } \eta_i(q) \leq \eta_0,i \\
0 & \text{if } \eta_i(q) > \eta_0,i
\end{cases}
\]

• \(f_{r,i}\) is orthogonal to the equipotential contour passing through \(q\) and points away from the obstacle

• \(f_{r,i}\) is continuous everywhere thanks to the convex decomposition of \(CO\)

• aggregate repulsive potential of \(CO\)

\[
U_r(q) = \sum_{i=1}^{p} U_{r,i}(q)
\]
total potential

- superposition: \(U_t(q) = U_a(q) + U_r(q) \)

- force field: \(f_t(q) = -\nabla U_t(q) = f_a(q) + \sum_{i=1}^{p} f_{r,i}(q) \)
planning techniques

• three techniques for planning on the basis of f_t

1. consider f_t as generalized forces: $\tau = f_t(q)$
 the effect on the robot is filtered by its dynamics
 (generalized accelerations are scaled)

2. consider f_t as generalized accelerations: $\ddot{q} = f_t(q)$
 the effect on the robot is independent on its dynamics
 (generalized forces are scaled)

3. consider f_t as generalized velocities: $\dot{q} = f_t(q)$
 the effect on the robot is independent on its dynamics
 (generalized forces are scaled)
• technique 1 generates smoother movements, while technique 3 is quicker (irrespective of robot dynamics) to realize motion corrections; technique 2 gives intermediate results.

• strictly speaking, only technique 3 guarantees (in the absence of local minima) asymptotic stability of q_g; velocity damping is necessary to achieve the same with techniques 1 and 2.
• off-line planning
paths in C are generated by numerical integration of the dynamic model (if technique 1), of $\ddot{q} = f_t(q)$ (if technique 2), of $\dot{q} = f_t(q)$ (if technique 3)
the most popular choice is 3 and in particular

$$q_{k+1} = q_k + T f_t(q_k)$$
i.e., the algorithm of steepest descent

• on-line planning (is actually feedback!)
technique 1 directly provides control inputs, technique 2 too (via inverse dynamics), technique 3 provides reference velocities for low-level control loops
the most popular choice is 3
local minima: a complication

• if a planned path enters the basin of attraction of a local minimum q_m of U_t, it will reach q_m and stop there, because $f_t(q_m) = -\nabla U_t(q_m) = 0$; whereas saddle points are not an issue

• repulsive fields generally create local minima, hence motion planning based on artificial potential fields is not complete (the path may not reach q_g even if a solution exists)

• workarounds exist but keep in mind that artificial potential fields are mainly used for on-line motion planning, where completeness may not be required
workaround no. 1: best-first algorithm

• build a discretized representation (by defect) of C_{free} using a regular grid, and associate to each free cell of the grid the value of U_t at its centroid

• build a tree T rooted at q_s: at each iteration, select the leaf of T with the minimum value of U_t and add as children its adjacent free cells that are not in T

• planning stops when q_g is reached (success) or no further cells can be added to T (failure)

• in case of success, build a solution path by tracing back the arcs from q_g to q_s
• best-first evolves as a grid-discretized version of steepest descent until a local minimum is met

• at a local minimum, best-first will “fill” its basin of attraction until it finds a way out

• the best-first algorithm is resolution complete

• its complexity is exponential in the dimension of \(C \), hence it is only applicable in low-dimensional spaces

• efficiency improves if random walks are alternated with basin-filling iterations (randomized best-first)
workaround no. 2: navigation functions

- paths generated by the best-first algorithm are not efficient (local minima are not avoided)
- a different approach: build navigation functions, i.e., potentials without local minima
- if the \(C \)-obstacles are star-shaped, one can map \(CO \) to a collection of spheres via a diffeomorphism, build a potential in transformed space and map it back to \(C \)
- another possibility is to define the potential as an harmonic function (solution of Laplace’s equation)
- all these techniques require complete knowledge of the environment: only suitable for off-line planning
• easy to build: numerical navigation function
• with C_{free} represented as a gridmap, assign 0 to start cell, 1 to cells adjacent to the 0-cell, 2 to unvisited cells adjacent to 1-cells, ... (wavefront expansion)

```
2 1 2 3 4 5 6 7 8 9 19
1 0 1 6 7 8 9 10 18
2 1 2 3 7 8 10 11 17
3 3 4 5 6 7 8 12 16
4 5 6 7 12 13 15
5 6 7 6 7 8 9 10 11 12 13 14
6 7 8 7 8 9 10 11 12 13 14 15
```

start goal

solution path: steepest descent from the goal
workaround no. 3: vortex fields

• an alternative to navigation functions in which one directly assigns a force field (rather than a potential)
• the idea is to replace the repulsive action (which is responsible for appearance of local minima) with an action forcing the robot to go around the \mathcal{C}-obstacle
• e.g., assume $\mathcal{C} = \mathbb{R}^2$ and define the vortex field for $\mathcal{C}O_i$ as

\[
\mathbf{f}_v = \pm \left(\begin{array}{c} \frac{\partial U_{r,i}}{\partial y} \\ -\frac{\partial U_{r,i}}{\partial x} \end{array} \right)
\]

i.e., a vector which is tangent (rather than normal) to the equipotential contours
• the intensity of the two fields is the same, only the direction changes

• if C_O_i is convex, the vortex sense (CW or CCW) can be always chosen in such a way that the total field (attractive+vortex) has no local minima
• in particular, the vortex sense (CW or CCW) should be chosen depending on the entrance point of the robot in the area of influence of the C-obstacle

• vortex relaxation must performed so as to avoid indefinite orbiting around the obstacle

• both these procedures can be easily performed at runtime based on local sensor measurements

• complete knowledge of the environment is not required: also suitable for on-line planning
artificial potentials for wheeled robots

• since WMRs are typically described by kinematic models, artificial potential fields for these robots are used at the velocity level

• however, robots subject to nonholonomic constraints violate the free-flying assumption

• as a consequence, the artificial force f_t cannot be directly imposed as a generalized velocity \dot{q}

• a possible approach: use f_t to generate a feasible \dot{q} via pseudoinversion
• the kinematic model of a WMR is expressed as

\[\dot{q} = G(q)u \]

• since \(G \) is \(n \times m \), with \(n > m \), it is in general impossible to compute \(u \) so as to realize exactly a desired \(\dot{q}_{\text{des}} \)

• however, a least-squares solution can be used

\[u = G^\dagger(q)\dot{q}_{\text{des}} = G^\dagger(q)f_t \]

where

\[G^\dagger(q) = (G^T(q)G(q))^{-1}G^T(q) \]
as an application, consider the case of a \textit{unicycle} robot moving in a \textit{planar} workspace; we have

$$G(q) = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow G^\dagger(q) = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

the \textit{least-squares} solution corresponding to an artificial force $f_t = (f_{t,x} \ f_{t,y} \ f_{t,\theta})^T$ is then

$$\nu = f_{t,x} \cos \theta + f_{t,y} \sin \theta$$

$$\omega = f_{t,\theta}$$

ν may be interpreted as the orthogonal projection of the \textit{cartesian} force $(f_{t,x} \ f_{t,y})^T$ on the sagittal axis
• assume that the unicycle robot has a circular shape, so that its orientation is irrelevant for collision

• one may build artificial potentials in a reduced $C' = \mathbb{R}^2$ with C'-obstacles simply obtained by growing the workspace obstacles by the robot radius

• in C', the attractive field pulls the robot towards (x_g, y_g) while repulsive fields push it away from C'-obstacle boundaries (segments and arcs of circle)

• since C' does not contain the orientation, the total field will not include a component $f_{t, \theta}$
• this degree of freedom can be exploited by letting
\[\omega = f_{t,\theta} = k_\theta (\text{atan2}(f_{t,y}, f_{t,x}) - \theta) \]
whose rationale is to force the unicycle to align with the total field, so that \(f_t \) can be better reproduced

• overall, a feedback control scheme is obtained where \(v \) and \(\omega \) are computed in real time from \(f_t \)

• assume w.l.o.g. \((x_g, y_g) = (0,0) \); close to the goal, where \(f_t = f_a \), the controls become
\[
\begin{align*}
 v &= -k_a (x \cos \theta + y \sin \theta) \\
 \omega &= k_\theta (\text{Atan2}(-y, -x) - \theta)
\end{align*}
\]
i.e., a cartesian regulator! (see slides Wheeled Mobile Robots 5)
• results on unicycle (using vortex fields)

• can be applied to robots moving unicycle-like
motion planning for robot manipulators

• complexity of motion planning is high, because the configuration space has dimension typically ≥ 4

• try to reduce dimensionality: e.g., in 6-dof robots, replace the wrist with the total volume it can sweep (a conservative approximation)

• both the construction and the shape of CO are complicated by the presence of revolute joints

• off-line planning: probabilistic methods are the best choice (although collision checking is heavy)

• on-line planning: adaptation of artificial potential fields
artificial potentials for robot manipulators

• to avoid the computation of CO and the “curse of dimensionality”, the potential is built in W (rather than in C) and acts on a set of control points $p_1,...,p_P$ distributed on the robot body.

• in general, control points include one point per link ($p_1,...,p_{P-1}$) and the end-effector (to which the goal is typically assigned) as p_P.

• the attractive potential U_a acts on p_P only, while the repulsive potential U_r acts on the whole set $p_1,...,p_P$; hence, p_P is subject to the total $U_t = U_a + U_r$.

Oriolo: Autonomous and Mobile Robotics - Artificial Potential Fields
two techniques for planning with control points:

1. impose to the robot joints the **generalized forces** resulting from the combined action of force fields

\[\tau = - \sum_{i=1}^{P-1} J_i^T(q) \nabla U_r(p_i) - J_P^T(q) \nabla U_t(p_P) \]

where \(J_i(q), i = 1, \ldots, P \), is the **Jacobian** matrix of the direct kinematics function associated to \(p_i(q) \)

2. use the above expression as **reference velocities** to be fed to the low-level control loops

\[\dot{q} = - \sum_{i=1}^{P-1} J_i^T(q) \nabla U_r(p_i) - J_P^T(q) \nabla U_t(p_P) \]
• technique 2 is actually a gradient-based minimization step in C of a combined potential in \mathcal{W}; in fact
\[\nabla_q U(p_i) = \left(\frac{\partial U(p_i(q))}{\partial q} \right)^T = \left(\frac{\partial U(p_i)}{\partial p_i} \frac{\partial p_i}{\partial q} \right)^T = J_i^T(q)\nabla U(p_i) \]

• technique 1 generates smoother movements, while technique 2 is quicker (irrespective of robot dynamics) to realize motion corrections

• both can stop at force equilibria, where the various forces balance each other even if the total potential U_t is not at a local minimum; hence, this method should be used in conjunction with a best-first algorithm
success
(with vortex field and folding heuristic for sense)

failure
(with repulsive field)

a force equilibrium between attractive and repulsive forces